Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 916: 170098, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38278250

RESUMO

Soil moisture (SM) directly controls the land surface energy partition which plays an important role in the formation of extreme weather events. However, its dependence on specific climatic conditions is not thoroughly understood due to the complexity of soil moisture effects. Here, we examine the relationship between SM and surface energy partitioning under different climate conditions, and identify the influence paradigms of soil moisture on surface energy partition. We find that temperature changes can explicitly determine the impact paradigm of different physical processes, i.e. evapotranspiration, soil freezing and thawing, and such influence paradigms are also affected by atmospheric aridity (VPD). Globally, there are five paradigms that effects on surface energy partitioning, including the warm-wet paradigm (WW), transitional paradigm (TP), warm-dry paradigm (WD), cool-wet paradigm (CW) and cold paradigm (CP). Since 1981, the global area proportion for TP is observed to increase pronouncedly. We also find that the critical SM threshold exhibits regional variations and the global average is 0.45 m3/m3. The identified paradigms and their long-term change trends provide new insights into the global intensification of land-atmosphere interaction, which has important implications for global warming and the formation of heatwaves.

2.
Environ Pollut ; 176: 198-207, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23434574

RESUMO

Here, we report on a two-years field experiment aimed at the quantification of the emissions of nitrous oxide (N2O) and methane (CH4) from the dominant wheat-maize double cropping system in North China Plain. The experiment had 6 different fertilization strategies, including a control treatment, recommended fertilization, with and without straw and manure applications, and nitrification inhibitor and slow release urea. Application of N fertilizer slightly decreased CH4 uptake by soil. Direct N2O emissions derived from recommended urea application was 0.39% of the annual urea-N input. Both straw and manure had relatively low N2O emissions factors. Slow release urea had a relatively high emission factor. Addition of nitrification inhibitor reduced N2O emission by 55%. We conclude that use of nitrification inhibitors is a promising strategy for N2O mitigation for the intensive wheat-maize double cropping systems.


Assuntos
Agricultura/métodos , Poluentes Atmosféricos/análise , Fertilizantes , Metano/análise , Dióxido de Nitrogênio/análise , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , China , Monitoramento Ambiental , Efeito Estufa , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA