Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Angew Chem Int Ed Engl ; 63(17): e202401551, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38403815

RESUMO

Singlet oxygen (1O2) is an exceptional reactive oxygen species in advanced oxidation processes for environmental remediation. Despite single-atom catalysts (SACs) representing the promising candidate for the selective generation of 1O2 from peroxymonosulfate (PMS), the necessity to meticulously regulate the coordination environment of metal centers poses a significant challenge in the precisely-controlled synthetic method. Another dilemma to SACs is their high surface free energy, which results in an inherent tendency for the surface migration and aggregation of metal atoms. We here for the first time reported that Ru nanoparticles (NPs) synthesized by the facile pyrolysis method behave as robust Fenton-like catalysts, outperforming Ru SACs, towards efficient activation of PMS to produce 1O2 with nearly 100 % selectivity, remarkably improving the degradation efficiency for target pollutants. Density functional theory calculations have unveiled that the boosted PMS activation can be attributed to two aspects: (i) enhanced adsorption of PMS molecules onto Ru NPs, and (ii) decreased energy barriers by offering adjacent sites for promoted dimerization of *O intermediates into adsorbed 1O2. This study deepens the current understanding of PMS chemistry, and sheds light on the design and optimization of Fenton-like catalysts.

2.
Nat Commun ; 14(1): 7255, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945562

RESUMO

Ceramic membranes are a promising alternative to polymeric membranes for selective separations, given their ability to operate under harsh chemical conditions. However, current fabrication technologies fail to construct ceramic membranes suitable for selective molecular separations. Herein, we demonstrate a molecular-level design of ceramic thin-film composite membranes with tunable subnanometer pores for precise molecular sieving. Through burning off the distributed carbonaceous species of varied dimensions within hybrid aluminum oxide films, we created membranes with tunable molecular sieving. Specifically, the membranes created with methanol showed exceptional selectivity toward monovalent and divalent salts. We attribute this observed selectivity to the dehydration of the large divalent ions within the subnanometer pores. As a comparison, smaller monovalent ions can rapidly permeate with an intact hydration shell. Lastly, the flux of neutral solutes through each fabricated aluminum oxide membrane was measured for the demonstration of tunable separation capability. Overall, our work provides the scientific basis for the design of ceramic membranes with subnanometer pores for molecular sieving using atomic layer deposition.

3.
Molecules ; 28(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37764406

RESUMO

The need to tackle CO2 emissions arising from the continuously rising combustion of fossil fuels has sparked considerable interest in investigating the reverse water gas shift (RWGS) reaction. This reaction holds great promise as an alternative technique for the conversion and utilization of CO2. In this study, a scalable method was employed to synthesize a single-atom Pt catalyst, uniformly dispersed on SiC, where up to 6.4 wt% Pt1 was loaded onto a support based on ligand modification and UV photoreduction. This Pt1/SiC catalyst exhibited a high selectivity (100%) towards the RWGS reaction; 54% CO2 conversion was observed at 900 °C with a H2/CO2 feed-in ratio of 1:1, significantly higher than the conventional Pt nanoparticle counterparts. Moreover, Pt1/SiC displayed a robust stability during the long-term test. The activation energy with as-synthesized Pt1/SiC was further calculated to be 61.6 ± 6.4 kJ/mol, which is much lower than the 91.6 ± 15.9 kJ/mol of the Pt nanoparticle counterpart and other Pt-based catalysts reported so far. This work offers new insights into the utilization of diverse single-atom catalysts for the RWGS reaction and other crucial catalytic processes, paving the way for the further exploration and application of SACs in various industrial endeavors.

4.
Environ Sci Technol ; 57(36): 13681-13690, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37650677

RESUMO

Here, we investigate the stability and performance of single-atom Pd on TiO2 for the selective dechlorination of 4-chlorophenol. A challenge inherent to single atoms is their high surface free energy, which results in a tendency for the surface migration and aggregation of metal atoms. This work evaluates various factors affecting the stability of Pd single-atoms, including atomic dispersion, coordination environment, and substrate properties, under reductive aqueous conditions. The transition from single atoms to clusters vastly enhanced dechlorination kinetics without diminishing carbon-chlorine bond selectivity. X-ray absorption spectroscopy analysis using both in situ and ex situ conditions followed the dynamic transformation of single atoms into amorphous clusters, which consist of a unique unsaturated coordination environment and few nanometer diameter. The intricate relationship between stability and performance underscores the vital role of detailed characterization to properly determine the true active species for dehalogenation reactions.


Assuntos
Carbono , Paládio , Cloretos , Cloro , Cinética
5.
Proc Natl Acad Sci U S A ; 120(11): e2217703120, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36877847

RESUMO

The release of wastewaters containing relatively low levels of nitrate (NO3-) results in sufficient contamination to induce harmful algal blooms and to elevate drinking water NO3- concentrations to potentially hazardous levels. In particular, the facile triggering of algal blooms by ultra-low concentrations of NO3- necessitates the development of efficient methods for NO3- destruction. However, promising electrochemical methods suffer from weak mass transport under low reactant concentrations, resulting in long treatment times (on the order of hours) for complete NO3- destruction. In this study, we present flow-through electrofiltration via an electrified membrane incorporating nonprecious metal single-atom catalysts for NO3- reduction activity enhancement and selectivity modification, achieving near-complete removal of ultra-low concentration NO3- (10 mg-N L-1) with a residence time of only a few seconds (10 s). By anchoring Cu single atoms supported on N-doped carbon in a carbon nanotube interwoven framework, we fabricate a free-standing carbonaceous membrane featuring high conductivity, permeability, and flexibility. The membrane achieves over 97% NO3- removal with high N2 selectivity of 86% in a single-pass electrofiltration, which is a significant improvement over flow-by operation (30% NO3- removal with 7% N2 selectivity). This high NO3- reduction performance is attributed to the greater adsorption and transport of nitric oxide under high molecular collision frequency coupled with a balanced supply of atomic hydrogen through H2 dissociation during electrofiltration. Overall, our findings provide a paradigm of applying a flow-through electrified membrane incorporating single-atom catalysts to improve the rate and selectivity of NO3- reduction for efficient water purification.

6.
Proc Natl Acad Sci U S A ; 120(9): e2216879120, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802414

RESUMO

Atomic dispersion of metal catalysts on a substrate accounts for the increased atomic efficiency of single-atom catalysts (SACs) in various catalytic schemes compared to the nanoparticle counterparts. However, lacking neighboring metal sites has been shown to deteriorate the catalytic performance of SACs in a few industrially important reactions, such as dehalogenation, CO oxidation, and hydrogenation. Metal ensemble catalysts (Mn), an extended concept to SACs, have emerged as a promising alternative to overcome such limitation. Inspired by the fact that the performance of fully isolated SACs can be enhanced by tailoring their coordination environment (CE), we here evaluate whether the CE of Mn can also be manipulated in order to enhance their catalytic activity. We synthesized a set of Pd ensembles (Pdn) on doped graphene supports (Pdn/X-graphene where X = O, S, B, and N). We found that introducing S and N onto oxidized graphene modifies the first shell of Pdn converting Pd-O to Pd-S and Pd-N, respectively. We further found that the B dopant significantly affected the electronic structure of Pdn by serving as an electron donor in the second shell. We examined the performance of Pdn/X-graphene toward selective reductive catalysis, such as bromate reduction, brominated organic hydrogenation, and aqueous-phase CO2 reduction. We observed that Pdn/N-graphene exhibited superior performance by lowering the activation energy of the rate-limiting step, i.e., H2 dissociation into atomic hydrogen. The results collectively suggest controlling the CE of SACs in an ensemble configuration is a viable strategy to optimize and enhance their catalytic performance.

7.
J Oncol ; 2022: 7574458, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016581

RESUMO

Oral squamous cell carcinoma (OSCC) is one of the most lethal cancers worldwide. The high morbidity and mortality of OSCC are a great burden to global health-care systems. Therefore it is important to understand the underlying molecular mechanisms of OSCC initiation and progression. This study aimed to investigate the role of circMAT2B in OSCC progression and its molecular mechanisms. First, the expression and circularization of circMAT2B in OSCC cells were verified. Subsequently, knockdown of circMAT2B was shown to inhibit OSCC cell proliferation, migration, invasion, and the Warburg effect. Bioinformatics prediction, RNA-pull down, and luciferase reporter gene assays led to the identification of a novel TEAD1/circMAT2B/miR-942-5p/HSPD1 axis in OSCC progression. In conclusion, the novel TEAD1/circMAT2B/miR-942-5p/HSPD1 axis is a potential target for OSCC.

8.
Environ Sci Technol ; 56(12): 8733-8745, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35537210

RESUMO

The superior catalytic property of single-atom catalysts (SACs) renders them highly desirable in the energy and environmental fields. However, using SACs for water decontamination is hindered by their limited spatial distribution and density on engineered surfaces and low stability in complex aqueous environments. Herein, we present copper SACs (Cu1) anchored on a thiol-doped reactive membrane for water purification. We demonstrate that the fabricated Cu1 features a Cu-S2 coordination─one copper atom is bridged by two thiolate sulfur atoms, resulting in high-density Cu-SACs on the membrane (2.1 ± 0.3 Cu atoms per nm2). The Cu-SACs activate peroxide to generate hydroxyl radicals, exhibiting fast kinetics, which are 40-fold higher than those of nanoparticulate Cu catalysts. The Cu1-functionalized membrane oxidatively removes organic pollutants from feedwater in the presence of peroxide, achieving efficient water purification. We provide evidence that a dual-site cascade mechanism is responsible for in situ regeneration of Cu1. Specifically, one of the two linked sulfur atoms detaches the oxidized Cu1 while donating one electron, and an adjacent free thiol rebinds the reduced Cu(I)-S pair, retrieving the Cu-S2 coordination on the reactive membrane. This work presents a universal, facile approach for engineering robust SACs on water-treatment membranes and broadens the application of SACs to real-world environmental problems.


Assuntos
Poluentes Ambientais , Peróxido de Hidrogênio , Cobre , Peróxidos , Compostos de Sulfidrila , Enxofre , Água
9.
Environ Sci Technol ; 56(2): 1341-1351, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34964609

RESUMO

We introduce a new graphene oxide (GO)-based membrane architecture that hosts cobalt catalysts within its nanoscale pore walls. Such an architecture would not be possible with catalysts in nanoscale, the current benchmark, since they would block the pores or alter the pore structure. Therefore, we developed a new synthesis procedure to load cobalt in an atomically dispersed fashion, the theoretical limit in material downsizing. The use of vitamin C as a mild reducing agent was critical to load Co as dispersed atoms (Co1), preserving the well-stacked 2D structure of GO layers. With the addition of peroxymonosulfate (PMS), the Co1-GO membrane efficiently degraded 1,4-dioxane, a small, neutral pollutant that passes through nanopores in single-pass treatment. The observed 1,4-dioxane degradation kinetics were much faster (>640 times) than the kinetics in suspension and the highest among reported persulfate-based 1,4-dioxane destruction. The capability of the membrane to reject large organic molecules alleviated their effects on radical scavenging. Furthermore, the advanced oxidation also mitigated membrane fouling. The findings of this study present a critical advance toward developing catalytic membranes with which two distinctive and complementary processes, membrane filtration and advanced oxidation, can be combined into a single-step treatment.


Assuntos
Poluentes Ambientais , Grafite , Catálise , Cobalto/química
10.
Environ Sci Technol ; 55(19): 13306-13316, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34545738

RESUMO

In this study, we loaded Pd catalysts onto a reduced graphene oxide (rGO) support in an atomically dispersed fashion [i.e., Pd single-atom catalysts (SACs) on rGO or Pd1/rGO] via a facile and scalable synthesis based on anchor-site and photoreduction techniques. The as-synthesized Pd1/rGO significantly outperformed the Pd nanoparticle (Pdnano) counterparts in the electrocatalytic hydrodechlorination of chlorinated phenols. Downsizing Pdnano to Pd1 leads to a substantially higher Pd atomic efficiency (14 times that of Pdnano), remarkably reducing the cost for practical applications. The unique single-atom architecture of Pd1 additionally affects the desorption energy of the intermediate, suppressing the catalyst poisoning by Cl-, which is a prevalent challenge with Pdnano. Characterization and experimental results demonstrate that the superior performance of Pd1/rGO originates from (1) enhanced interfacial electron transfer through Pd-O bonds due to the electronic metal-support interaction and (2) increased atomic H (H*) utilization efficiency by inhibiting H2 evolution on Pd1. This work presents an important example of how the unique geometric and electronic structure of SACs can tune their catalytic performance toward beneficial use in environmental remediation applications.


Assuntos
Recuperação e Remediação Ambiental , Paládio , Catálise
11.
J Immunol Res ; 2021: 6203759, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497859

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, which remains a major cause of morbidity and mortality in patients with head and neck cancers. However, the critical immune-related signatures and their prognostic values have rarely been investigated. MATERIALS AND METHODS: Gene differential analysis was used to measure the differences of gene expression between the groups. Correlation analysis was used to assess the association between the gene expression levels and immune-related risk score/DNA methylation levels. The gene set enrichment analysis (GSEA) was used to identify the pathways or cell types enriched by those identified differentially expressed genes (DEGs). RESULTS: In this study, we identified four immune-related gene signatures, including CTSG, TNFRSF4, LCORL, and PLAU, that were significantly associated with the overall survival in OSCC patients from the Cancer Genome Atlas (TCGA) OSCC cohort. Moreover, these four immune-related signatures were differentially expressed between the OSCC and nontumor tissues. The two groups (high and low risk) stratified by the immune-related risk scores had significantly different OS and mortality rates. The gene expression patterns and prognostic values of these immune-related signatures were also verified in two independent validation cohorts. Furthermore, the downregulated genes in the high-risk group (which were also upregulated in the low-risk group) were significantly enriched in the cell type-specific signatures of type 2 T helper cell (Th2), plasmacytoid dendritic cell (pDC), and memory B cell. In contrast, the upregulated genes in the high-score group were enriched in growth factor receptor-related signaling pathways, such as the VEGFA-VEGFR2 signaling pathway, PI3K-Akt signaling pathway, focal adhesion-PI3K-Akt-mTOR signaling pathway, and PDGF pathway, suggesting that those pathways were inversely correlated with immune cell infiltration. CONCLUSION: In summary, the immune-related signatures had the potential for predicting the risk of OSCC patients. Moreover, the present study also improved our understanding of the association between the growth factor receptor pathways and immune cell infiltration in OSCC.


Assuntos
Biomarcadores Tumorais/imunologia , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/mortalidade , Suscetibilidade a Doenças/imunologia , Neoplasias Bucais/imunologia , Neoplasias Bucais/mortalidade , Animais , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/diagnóstico , Biologia Computacional/métodos , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imunidade/genética , Masculino , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Transdução de Sinais , Transcriptoma
12.
Nat Commun ; 12(1): 5179, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462434

RESUMO

Single atom catalysts have been found to exhibit superior selectivity over nanoparticulate catalysts for catalytic reactions such as hydrogenation due to their single-site nature. However, improved selectively is often accompanied by loss of activity and slow kinetics. Here we demonstrate that neighboring Pd single atom catalysts retain the high selectivity merit of sparsely isolated single atom catalysts, while the cooperative interactions between neighboring atoms greatly enhance the activity for hydrogenation of carbon-halogen bonds. Experimental results and computational calculations suggest that neighboring Pd atoms work in synergy to lower the energy of key meta-stable reactions steps, i.e., initial water desorption and final hydrogenated product desorption. The placement of neighboring Pd atoms also contribute to nearly exclusive hydrogenation of carbon-chlorine bond without altering any other bonds in organohalogens. The promising hydrogenation performance achieved by neighboring single atoms sheds light on a new approach for manipulating the activity and selectivity of single atom catalysts that are increasingly studied in multiple applications.

13.
Sci Total Environ ; 758: 143666, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33257073

RESUMO

The decomposition of long-chain perfluorocarboxylic acids (PFCAs), including perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA), were investigated by electrochemical activation of peroxymonosulfate (PMS) on porous Ti/SnO2-Sb membrane anode. The results indicated that PMS activation could efficiently promote PFNA/PFDA decomposition, with pseudo-first-order rate constants about 3.12/2.06 times as compared with that of direct electro-oxidations. The energy consumptions of PFNA and PFDA decomposition were 36.31 and 37.46 kWh·m-3·order-1, respectively. The quantitative detection results of •OH with electron paramagnetic resonance (EPR) demonstrated that PMS activation promoted •OH formation. The inhibited performance in radical scavengers indicated both •OH and SO4•- might be mainly involved in PFNA decomposition, while SO4•- might be mainly involved in PFDA decomposition during PMS activation process. The mineralization mechanism for long-chain PFCAs decomposition which was mainly by repeating CF2-unzipping cycle via radical reaction based on the intermediates verification and mass balance of C and F, was proposed. These results suggested that electrochemical activation of PMS on porous Ti/SnO2-Sb membrane anode exhibited high efficiency in mineralizing PFNA and PFDA under mild conditions. This work might provide an efficient way for persistent organic pollutants, including, but not limited to long-chain PFCAs elimination from wastewater.

14.
Sci Total Environ ; 757: 143719, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33221019

RESUMO

This work presented a three-dimensional (3D) hierarchically microporous biochar (HMB) via molten alkali treatment that achieved efficient adsorption of perfluorinated carboxylic acids (PFCAs), which was a significant environment concern due to the global distribution and potential health risks. The systematic optimization of fabrication process rendered the HMB large surface area and uniform microporous structure, leading to a high adsorption capacity and adsorption rate of 1269 mg/g and 197 mg/(g·min), respectively, when perfluorooctanoic acid (PFOA) was as a representative. The adsorption mechanisms were explored via controlling the interaction between PFCAs and the HMB900-2.4. Specifically, hydrophobic effect was verified by the enhanced adsorption performance with the increase of the PFCAs homologues hydrophobicity. The observed highly pH-dependent adsorption capacity additionally suggested the dominant contribution of electrostatic interaction. For long-chain PFCAs (CnF2n+1COOH, n > 5), the HMB900-2.4 presented a high removal efficiency (> 90%) within 30 min. Even for short-chain PFCAs (CnF2n+1COOH, n = 4-5), the removal efficiency reached to over 60%. The synthesized HMB900-2.4 exhibited high stability during recycling experiments and superior performance over commercial adsorbents, suggested a promise of utilizing it to remove PFCAs from wastewater.

15.
Environ Sci Technol ; 55(2): 1242-1250, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33213138

RESUMO

Transition-metal catalysts that can efficiently activate peroxide bonds have been extensively pursued for various applications including environmental remediation, chemical synthesis, and sensing. Here, we present pyridine-coordinated Co single atoms embedded in a polyaromatic macrostructure as a highly efficient peroxide-activation catalyst. The efficient catalytic production of reactive radicals through peroxymonosulfate activation was demonstrated by the rapid removal of model aqueous pollutants of environmental and public health concerns such as bisphenol A, without pH limitation and Co2+ leaching. The turnover frequency of the newly synthesized Co single-atom catalyst bound to tetrapyridomacrocyclic ligands was found to be 2 to 4 orders of magnitude greater than that of benchmark homogeneous (Co2+) and nanoparticulate (Co3O4) catalysts. Experimental results and density functional theory simulation suggest that the abundant π-conjugation in the polyaromatic support and strong metal-support electronic interaction allow the catalysts to effectively adsorb and activate the peroxide precursor. We further loaded the catalysts onto a widely used poly(vinylidene fluoride) microfiltration membrane and demonstrated that the model pollutants were oxidatively removed as they simply passed through the filter, suggesting the promise of utilizing this novel catalyst for realistic applications.


Assuntos
Cobalto , Purificação da Água , Catálise , Peróxidos
16.
J Mater Sci Mater Med ; 31(12): 124, 2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33247776

RESUMO

As traditional root canal obturation leads to the loss of the biological activity of the tooth, it is necessary to develop a material that promotes the regeneration of dental tissue. However, this remains a challenging task. Our study aims to construct a mineralized material to support the proliferation and differentiation of dental pulp stem cells (DPSCs), and to explore a new strategy for the treatment of pulp tissue necrosis. Mineralized keratin (M-keratin), defined as keratin that has been mineralized in simulated body fluid, was first harvested to construct the root canal filling material. Characterizations indicated that new substances or components were formed on the surface of keratin particles after mineralization, and the morphology of the keratin was changed. M-keratin promoted the growth, proliferation, and differentiation of DPSCs. After cultivation with M-keratin, DPSCs exhibited more extracellular matrix proteins interacting with the culture interface, the number of these cells increased significantly, and the 3-[4,5-dimethylthiazol-2-yl-]-2,5-diphenyltetrazolium bromide values of cells in the experimental group also increased. Meanwhile, signs that the DPSCs began to differentiate into odontoblasts were observed or detected by alizarin red S staining, ELISA, RNA-Seq, and western blot. We hope that this study will contribute to the development of a new material that promotes the regeneration of dental tissue as well as providing new ideas and strategies for the treatment of dental pulp disease.


Assuntos
Microambiente Celular/efeitos dos fármacos , Queratinas/farmacologia , Odontoblastos/efeitos dos fármacos , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Líquidos Corporais/química , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Implantes Dentários , Polpa Dentária/citologia , Polpa Dentária/fisiologia , Humanos , Queratinas/química , Nanoestruturas/química , Odontoblastos/citologia , Odontoblastos/fisiologia , Ratos , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia
17.
J Cell Mol Med ; 24(22): 13266-13277, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33090705

RESUMO

Circular RNAs (circRNAs) represent a newly discovered class of endogenous non-coding RNAs which are widely expressed and play important roles in disease progression. However, the function of circRNAs in oral squamous cell carcinoma (OSCC) still remains largely unknown. In this research, we found that circ_SEPT9 was highly expressed in OSCC cell lines and tumour tissues. Results showed that circ_SEPT9 promoted OSCC proliferation and tumour growth. And, circ_SEPT9 also enhanced the migration and invasion of OSCC cells. Mechanically, we found that circ_SEPT9 acted as a sponge for miR-1225 to rescue PKN2 expression in OSCC cells. Inhibition of circ_SEPT9/miR-1225/PKN2 pathway could effectively block the proliferation and metastasis of OSCC cells. Our study provides strong evidence that circ_SEPT9/miR-1225/PKN2 axis is a promising target for OSCC treatment.


Assuntos
Carcinoma de Células Escamosas/metabolismo , MicroRNAs/metabolismo , Neoplasias Bucais/metabolismo , Proteína Quinase C/metabolismo , RNA Circular/metabolismo , Septinas/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Proteínas do Citoesqueleto/metabolismo , Progressão da Doença , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço
18.
Environ Sci Technol ; 54(17): 10954-10963, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32786604

RESUMO

We here present a novel Ti4O7-based electrode loaded with amorphous Pd clusters that achieve efficient anodic destruction of perfluorooctanoic acid (PFOA), a persistent water pollutant with significant environmental and human health concerns. These amorphous Pd clusters were characterized by the disordered, noncrystalline arrangement of Pd single atoms in close proximity, in contrast to crystalline Pd nanoparticles that have been often employed to tailor the electronic properties of an electrode. We found that the Ti4O7 electrode loaded with amorphous Pd clusters significantly outperformed the Ti4O7 electrode loaded with crystalline Pd particles due to enhanced electron transfer through dominant Pd-O bonds. Combined with the efficient binding of PFOA and its degradation intermediates to the fluorinated electrode surface, this electrode was capable of mineralizing PFOA and releasing fluoride as F-. The reaction pathway was found to proceed without involving reactive oxygen species and therefore was not quenched by common anions in complex natural water systems such as chloride ions.


Assuntos
Fluorocarbonos , Titânio , Caprilatos , Eletrodos
19.
Proc Natl Acad Sci U S A ; 117(12): 6376-6382, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32161133

RESUMO

Redox cocatalysts play crucial roles in photosynthetic reactions, yet simultaneous loading of oxidative and reductive cocatalysts often leads to enhanced charge recombination that is detrimental to photosynthesis. This study introduces an approach to simultaneously load two redox cocatalysts, atomically dispersed cobalt for improving oxidation activity and anthraquinone for improving reduction selectivity, onto graphitic carbon nitride (C3N4) nanosheets for photocatalytic H2O2 production. Spatial separation of oxidative and reductive cocatalysts was achieved on a two-dimensional (2D) photocatalyst, by coordinating cobalt single atom above the void center of C3N4 and anchoring anthraquinone at the edges of C3N4 nanosheets. Such spatial separation, experimentally confirmed and computationally simulated, was found to be critical for enhancing surface charge separation and achieving efficient H2O2 production. This center/edge strategy for spatial separation of cocatalysts may be applied on other 2D photocatalysts that are increasingly studied in photosynthetic reactions.

20.
Environ Int ; 137: 105562, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32062439

RESUMO

Perfluorooctanoic acid (PFOA) was efficiently decomposed at Ti/SnO2-Sb anode via peroxymonosulfate (PMS) activation. PFOA degradation followed both pseudo-zero-order (0-30 min) and pseudo-first-order (30-120 min) kinetics. The pseudo-first-order kinetics constant could increase to 0.0484 min-1 (3.84 times higher than that without PMS) during 30-120 min electrolysis. The inhibited performance in radical scavengers implied both sulfate radical (SO4•-) and hydroxyl radical (•OH) contributed to PFOA degradation. The •OH quantitative detection experiments demonstrated that SO4•- formed from PMS activation could promote •OH generation (from 0.12 mM to 0.24 mM). Electron spin resonance (ESR) tests further proved that SO4•- and •OH were generated during PFOA degradation. According to linear sweep voltammetry (LSV) analyses, the oxygen evolution potential (OEP) value of Ti/SnO2-Sb electrode increased from 1.59 V to 1.72 V (vs SCE) via PMS addition, indicating the inhibited oxygen evolution which was beneficial for the reactive species formation (i.e. •OH, SO4•-). On the basis of intermediates verification and mass balance of carbon and fluorine, PFOA was proposed to be oxidized into short-chain perfluorocarboxylic acids mainly by •OH and SO4•-.


Assuntos
Caprilatos , Fluorocarbonos , Poluentes Químicos da Água , Oxirredução , Peróxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA