Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Front Plant Sci ; 15: 1392355, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721334

RESUMO

Selenium (Se) is a crucial micronutrient for human health. Plants are the primary source of Se for humans. Selenium in the soil serves as the primary source of Se for plants. The soil contains high total Se content in large areas in Guangxi, China. However, the available Se is low, hindering Se uptake by plants. Microorganisms play a pivotal role in the activation of Se in the soil, thereby enhancing its uptake by plants. In this study, selenobacteria were isolated from Se-rich soils in Guangxi. Then two selenobacteria strains, YLB1-6 and YLB2-1, representing the highest (30,000 µg/mL) and lowest (10,000 µg/mL) Se tolerance levels among the Se-tolerant bacteria, were selected for subsequent analysis. Although the two selenobacteria exhibited distinct effects, they can significantly transform Se species, resulting in a decrease in the soil residual Se (RES-Se) content while concurrently increasing the available Se (AVA-Se) content. Selenobacteria also enhance the transformation of Se valencies, with a significant increase observed in soluble Se6+ (SOL-Se6+). Additionally, selenobacteria can elevate the pH of acidic soil. Selenobacteria also promote the uptake of Se into plants. After treatment with YLB1-6 and YLB2-1, the Se content in the aboveground part of Chinese flowering cabbage increased by 1.96 times and 1.77 times, respectively, while the Se accumulation in the aboveground part of the plant significantly increased by 104.36% and 81.69%, respectively, compared to the control. Further whole-genome sequencing revealed the genetic difference between the two selenobacteria. Additionally, 46 and 38 candidate genes related to selenium utilization were identified from YLB1-6 and YLB2-1, respectively. This work accelerates our understanding of the potential molecular mechanism of Se biofortification by selenobacteria. It also provides microorganisms and gene targets for improving crop varieties or microorganisms to exploit the rich Se source in soil.

2.
Plants (Basel) ; 13(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38337981

RESUMO

Sugarcane is the most important sugar crop and one of the leading energy-producing crops in the world. Ratoon stunting disease (RSD), caused by the bacterium Leifsonia xyli subsp. xyli, poses a huge threat to ratoon crops, causing a significant yield loss in sugarcane. Breeding resistant varieties is considered the most effective and fundamental approach to control RSD in sugarcane. The exploration of resistance genes forms the foundation for breeding resistant varieties through molecular technology. The pglA gene is a pathogenicity gene in L. xyli subsp. xyli, encoding an endopolygalacturonase. In this study, the pglA gene from L. xyli subsp. xyli and related microorganisms was analyzed. Then, a non-toxic, non-autoactivating pglA bait was successfully expressed in yeast cells. Simultaneously the yeast two-hybrid library was generated using RNA from the L. xyli subsp. xyli-infected sugarcane. Screening the library with the pglA bait uncovered proteins that interacted with pglA, primarily associated with ABA pathways and the plant immune system, suggesting that sugarcane employs these pathways to respond to L. xyli subsp. xyli, triggering pathogenicity or resistance. The expression of genes encoding these proteins was also investigated in L. xyli subsp. xyli-infected sugarcane, suggesting multiple layers of regulatory mechanisms in the interaction between sugarcane and L. xyli subsp. xyli. This work promotes the understanding of plant-pathogen interaction and provides target proteins/genes for molecular breeding to improve sugarcane resistance to L. xyli subsp. xyli.

3.
Fish Shellfish Immunol ; 142: 109170, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37852511

RESUMO

Pseudomonas plecoglossicida infection is a highly contagious epidemic in aquaculture, causing significant mortality among teleost. Our previous research has demonstrated that Lactobacillus plantarum E2 is beneficial for large yellow croaker in resisting infections caused by P. plecoglossicida. However, the relevant mechanisms remain largely unclear. In the present study, we used zebrafish (Danio rerio) to further explore the function of L. plantarum E2 and its mechanisms for resisting P. plecoglossicida infection. E2 supplementation diet significantly improved the growth rates and α-amylase and trypsin activities of the liver in zebrafish. After challenge with P. plecoglossicida strain PQLYC4, the survival rates of zebrafish were improved, and immune-related genes expression (IL-1ß, TNF-α, IL-8, Ig-Z, TLR-22 and IL-12α) were down-regulated. Histological analysis showed that E2 group had a longer intestinal villus and thicker intestinal walls after 30 days of feeding and healthier intestinal structure after challenge with P. plecoglossicida strain PQLYC4. Furthermore, co-incubation of zebrafish embryo fibroblast (ZF-4 cells) with L. plantarum E2 reduced apoptosis of ZF-4 cells after exposed to P. plecoglossicida. Intestinal microbiota analysis showed that E2 strain significantly increased the relative abundance of Lactobacillus and Pseudomonas, and PCoA analysis revealed a noticeable divergence in the intestinal microbial communities after E2 supplement. Together, our results suggested that E2 strain may promote zebrafish survival against P. plecoglossicida infection by regulating the intestinal microbiota and alleviating inflammatory response and apoptosis, thus exhibiting the potential as a probiotic.


Assuntos
Microbioma Gastrointestinal , Lactobacillus plantarum , Infecções por Pseudomonas , Animais , Peixe-Zebra , Lactobacillus plantarum/química , Pseudomonas , Inflamação/veterinária , Infecções por Pseudomonas/prevenção & controle , Infecções por Pseudomonas/veterinária , Apoptose
4.
J Agric Food Chem ; 71(44): 16815-16826, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37856846

RESUMO

Sugarcane, a major sugar and energy crop worldwide faces an increasing demand for higher yields. Identifying yield-related markers and candidate genes is valuable for breeding high-yield varieties using molecular techniques. In this work, seven yield-related traits were evaluated in a diversity panel of 159 genotypes, derived from Tripidium arundinaceum, Saccharum spontaneum, and modern sugarcane genotypes. All traits exhibited significant genetic variance with high heritability and high correlations. Genetic diversity analysis reveals a genomic decay of 23 kb and an average single nucleotide polymorphism (SNP) number of 25,429 per genotype. These 159 genotypes were divided into 4 subgroups. Genome-wide association analysis identified 47 SNPs associated with brix, spanning 36 quantitative trait loci (QTLs), and 138 SNPs for other traits across 104 QTLs, covering all 32 chromosomes. Interestingly, 12 stable QTLs associated with yield-related traits were identified, which contained 35 candidate genes. This work provides markers and candidate genes for marker-assisted breeding to improve sugarcane yields.


Assuntos
Locos de Características Quantitativas , Saccharum , Estudo de Associação Genômica Ampla , Saccharum/genética , Melhoramento Vegetal , Fenótipo , Polimorfismo de Nucleotídeo Único , Grão Comestível
5.
Infect Drug Resist ; 16: 3619-3627, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37309380

RESUMO

DL96 Microbial Identification/Antimicrobial Susceptibility Testing (ID/AST) System (Zhuhai DL, Guangdong, China) is one of the most commonly used commercial ID/AST System in China. This study aims to evaluate the performance of DL 96E for Antimicrobial Susceptibility Testing (AST) of 270 Enterobacterales isolates from Hainan general hospital using the broth microdilution method (BMD) as reference method. CLSI M52 criteria was followed when analyzing the evaluation results. Twenty antimicrobial agents were evaluated, and categorical agreement (CA) ranged from 62.8% to 96.5%. Imipenem had the lowest CA (63.9%) and highest very major errors (VME) (52.8%). A total of 103 carbapenem-resistant Enterobacterales were evaluated; DL 96E miss identified 22 isolates, including six carbapenemase-producing Enterobacteriaceae. DL 96E must adjust the Minimum Inhibitory Concentration (MIC) ranges of ciprofloxacin, levofloxacin, and piperacillin-tazobactam to cover Clinical and Laboratory Standards Institute (CLSI) breakpoints, adjust the formulation of some antimicrobial, such as imipenem, and increase the MIC detection range to cover the Quality control (QC) strains' MIC range.

6.
Heliyon ; 9(4): e14860, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37123965

RESUMO

Background: Porphyromonas pogonae was first reported in 2011 from polymicrobial infections in central bearded dragons. Human infections caused by P. pogonae remain rare, with only four cases published in the PubMed database. Herein, we present an unusual Chinese case of the thoracoabdominal wall abscess with sepsis caused by P. pogonae and review the clinical manifestations, diagnostic evaluation, and clinical outcome of the case. Case presentation: A 62-year-old female with sinusitis but no diabetes mellitus presented with fever, tenderness under an abdominal mass, and paroxysmal stabbing pain in the chest after receiving augmentation mammoplasty. Cultures of blood and pus yielded P. pogonae, and a diagnosis of sepsis with an abscess in the chest and abdominal wall was made. After repeated debridement and appropriate meropenem antibiotic treatment, the patient was successfully treated and discharged home. Conclusions: We report the first human case of P. pogonae causing sepsis in a patient with an abscess in China. The identification of P. pogonae should be considered if the strain grows well under either anaerobic or microaerobic conditions and exhibits strong ß-hemolysis with fluorescence. This study retrospectively reviewed patients' infection diagnosis, clinical treatment, and prognosis to enhance awareness of the risk of P. pogonae infection.

7.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240257

RESUMO

Sugarcane, a C4 plant, provides most of the world's sugar, and a substantial amount of renewable bioenergy, due to its unique sugar-accumulating and feedstock properties. Brazil, India, China, and Thailand are the four largest sugarcane producers worldwide, and the crop has the potential to be grown in arid and semi-arid regions if its stress tolerance can be improved. Modern sugarcane cultivars which exhibit a greater extent of polyploidy and agronomically important traits, such as high sugar concentration, biomass production, and stress tolerance, are regulated by complex mechanisms. Molecular techniques have revolutionized our understanding of the interactions between genes, proteins, and metabolites, and have aided in the identification of the key regulators of diverse traits. This review discusses various molecular techniques for dissecting the mechanisms underlying the sugarcane response to biotic and abiotic stresses. The comprehensive characterization of sugarcane's response to various stresses will provide targets and resources for sugarcane crop improvement.


Assuntos
Saccharum , Transcriptoma , Saccharum/metabolismo , Proteômica , Perfilação da Expressão Gênica , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430189

RESUMO

Sugarcane is the most important sugar crop, contributing ≥80% to total sugar production around the world. Spodoptera frugiperda is one of the main pests of sugarcane, potentially causing severe yield and sugar loss. The identification of key defense factors against S. frugiperda herbivory can provide targets for improving sugarcane resistance to insect pests by molecular breeding. In this work, we used one of the main sugarcane pests, S. frugiperda, as the tested insect to attack sugarcane. Integrated transcriptome and metabolomic analyses were performed to explore the changes in gene expression and metabolic processes that occurred in sugarcane leaf after continuous herbivory by S. frugiperda larvae for 72 h. The transcriptome analysis demonstrated that sugarcane pest herbivory enhanced several herbivory-induced responses, including carbohydrate metabolism, secondary metabolites and amino acid metabolism, plant hormone signaling transduction, pathogen responses, and transcription factors. Further metabolome analysis verified the inducement of specific metabolites of amino acids and secondary metabolites by insect herbivory. Finally, association analysis of the transcriptome and metabolome by the Pearson correlation coefficient method brought into focus the target defense genes against insect herbivory in sugarcane. These genes include amidase and lipoxygenase in amino acid metabolism, peroxidase in phenylpropanoid biosynthesis, and pathogenesis-related protein 1 in plant hormone signal transduction. A putative regulatory model was proposed to illustrate the sugarcane defense mechanism against insect attack. This work will accelerate the dissection of the mechanism underlying insect herbivory in sugarcane and provide targets for improving sugarcane variety resistance to insect herbivory by molecular breeding.


Assuntos
Herbivoria , Saccharum , Animais , Spodoptera/genética , Saccharum/genética , Transcriptoma , Reguladores de Crescimento de Plantas , Metaboloma , Insetos/fisiologia , Grão Comestível/genética , Açúcares , Aminoácidos/genética
9.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430736

RESUMO

Sugarcane, a cash crop, is easily affected by low temperature, which results in a decrease in yield and sugar production. Breeding a new variety with cold tolerance is an essential strategy to reduce loss from cold stress. The identification of germplasms and genes/proteins with cold tolerance is a vital step in breeding sugarcane varieties with cold tolerance via a conventional program and molecular technology. In this study, the physiological and biochemical indices of 22 genotypes of S. spontaneum were measured, and the membership function analysis method was used to comprehensively evaluate the cold tolerance ability of these genotypes. The physiological and biochemical indices of these S. spontaneum genotypes showed a sophisticated response to low temperature. On the basis of the physiological and chemical indices, the genotypes were classified into different cold tolerance groups. Then, the high-tolerance genotype 1027 and the low-tolerance genotype 3217 were selected for DIA-based proteomic analysis by subjecting them to low temperature. From the four comparison groups, 1123, 1341, 751, and 1693 differentially abundant proteins (DAPs) were identified, respectively. The DAPs based on genotypes or treatments participated in distinct metabolic pathways. Through detailed analysis of the DAPs, some proteins related to protein homeostasis, carbohydrate and energy metabolism, amino acid transport and metabolism, signal transduction, and the cytoskeleton may be involved in sugarcane tolerance to cold stress. Furthermore, five important proteins related to cold tolerance were discovered for the first time in this study. This work not only provides the germplasms and candidate target proteins for breeding sugarcane varieties with cold tolerance via a conventional program and molecular breeding, but also helps to accelerate the determination of the molecular mechanism underlying cold tolerance in sugarcane.


Assuntos
Saccharum , Melhoramento Vegetal , Proteômica , Saccharum/metabolismo , Temperatura
10.
BMC Genomics ; 23(1): 532, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869434

RESUMO

BACKGROUND: Sugarcane is the most important sugar crop, contributing > 80% of global sugar production. High sucrose content is a key target of sugarcane breeding, yet sucrose improvement in sugarcane remains extremely slow for decades. Molecular breeding has the potential to break through the genetic bottleneck of sucrose improvement. Dissecting the molecular mechanism(s) and identifying the key genetic elements controlling sucrose accumulation will accelerate sucrose improvement by molecular breeding. In our previous work, a proteomics dataset based on 12 independent samples from high- and low-sugar genotypes treated with ethephon or water was established. However, in that study, employing conventional analysis, only 25 proteins involved in sugar metabolism were identified . RESULTS: In this work, the proteomics dataset used in our previous study was reanalyzed by three different statistical approaches, which include a logistic marginal regression, a penalized multiple logistic regression named Elastic net, as well as a Bayesian multiple logistic regression method named Stochastic search variable selection (SSVS) to identify more sugar metabolism-associated proteins. A total of 507 differentially abundant proteins (DAPs) were identified from this dataset, with 5 of them were validated by western blot. Among the DAPs, 49 proteins were found to participate in sugar metabolism-related processes including photosynthesis, carbon fixation as well as carbon, amino sugar, nucleotide sugar, starch and sucrose metabolism. Based on our studies, a putative network of key proteins regulating sucrose accumulation in sugarcane is proposed, with glucose-6-phosphate isomerase, 2-phospho-D-glycerate hydrolyase, malate dehydrogenase and phospho-glycerate kinase, as hub proteins. CONCLUSIONS: The sugar metabolism-related proteins identified in this work are potential candidates for sucrose improvement by molecular breeding. Further, this work provides an alternative solution for omics data processing.


Assuntos
Saccharum , Teorema de Bayes , Análise de Dados , Regulação da Expressão Gênica de Plantas , Fotossíntese , Melhoramento Vegetal , Proteômica , Saccharum/metabolismo , Sacarose/metabolismo , Açúcares/metabolismo
11.
Insects ; 13(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35735837

RESUMO

Chilo sacchariphagus Bojer is an important sugarcane pest globally. Along with genetic modification strategies, the sterile insect technique (SIT) has gained more attention as an environment-friendly method for pest control. The identification of key genes associated with sex determination and differentiation will provide important basic information for this control strategy. As such, the transcriptome sequencing of female and male adults was conducted in order to understand the sex-biased gene expression and molecular basis of sex determination and differentiation in this species. A total of 60,429 unigenes were obtained; among them, 34,847 genes were annotated. Furthermore, 11,121 deferentially expressed genes (DEGs) were identified, of which 8986 were male-biased and 2135 were female-biased genes. The male-biased genes were enriched for carbon metabolism, peptidase activity and transmembrane transport, while the female-biased genes were enriched for the cell cycle, DNA replication, and the MAPK signaling pathway. In addition, 102 genes related to sex-determination and differentiation were identified, including the protein toll, ejaculatory bulb-specific protein, fruitless, transformer-2, sex-lethal, beta-Catenin, sox, gata4, beta-tubulin, cytosol aminopeptidase, seminal fluid, and wnt4. Furthermore, transcription factors such as myb, bhlh and homeobox were also found to be potentially related to sex determination and differentiation in this species. Our data provide new insights into the genetic elements associated with sex determination and differentiation in Chilo sacchariphagus, and identified potential candidate genes to develop pest-control strategies.

12.
Methods Mol Biol ; 2530: 241-256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35761053

RESUMO

Chemical synthesis can provide hydrophobic proteins with natural or man-made modifications (e.g. S-palmitoylation, site-specific isotope labeling and mirror-image proteins) that are difficult to obtain through the recombinant expression technology. The difficulty of chemical synthesis of hydrophobic proteins stems from the hydrophobic nature. Removable backbone modificaiton (RBM) strategy has been developed for solubilizing the hydrophobic peptides/proteins. Here we take the chemical synthesis of a S-palmitoylated peptide as an example to describe the detailed procedure of RBM strategy. Three critical steps of this protocol are: (1) installation of Lys6-tagged RBM groups into the peptides by Fmoc (9-fluorenylmethyloxycarbonyl) solid-phase peptide synthesis, (2) chemical ligation of the peptides, and (3) removal of the RBM tags by TFA (trifluoroacetic acid) cocktails to give the target peptide.


Assuntos
Peptídeos , Técnicas de Síntese em Fase Sólida , Humanos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/química , Proteínas , Técnicas de Síntese em Fase Sólida/métodos , Ácido Trifluoracético
13.
Med Sci Monit ; 27: e933196, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34737257

RESUMO

BACKGROUND Complications are the most important outcome determinants for acute pancreatitis (AP). We designed this single-center retrospective study to evaluate the clinical findings (complications, disease severity, and outcomes) of 218 patients with AP and to identify variables associated with ascites. MATERIAL AND METHODS We extracted clinical data from consecutive patients with AP and divided them into 2 groups based on presence or absence of ascites. We compared disease severity, complications, and outcomes between groups. RESULTS We analyzed data from 218 patients with AP (43 with ascites and 175 without it). The patients with ascites had a more severe disease (higher incidence of pancreatic inflammation [90.70% vs 68.57%; P=0.003], higher modified computed tomography severity index score [2.00 (0.00-2.00) vs 4.00 (4.00-6.00); P<0.001], higher incidence of moderate/severe AP [53.49% vs 13.14%; P<0.001]) and poorer outcomes (higher incidence of ventilation [6.98% vs 0.57%; P=0.025] and vasopressor use [4.65% vs 0%; P=0.038], and longer hospital stays [10.00 (7.00-13.00) vs 8.00 (5.00-10.00); P=0.007]) than those without ascites. Moreover, patients with ascites also displayed a higher risk for pancreatic fluid collection (odds ratio [OR]=9.206; 95% confidence interval [CI], 2.613-32.447; P<0.001), renal failure (OR=5.732; 95% CI, 1.025-32.041; P=0.024), respiratory failure (OR=6.242; 95% CI, 1.034-37.654; P=0.029), and pleural effusion (OR=5.186; 95% CI, 1.381-19.483; P<0.001) than those without ascites. CONCLUSIONS The findings from the experience of a single center of patients with AP showed that pancreatic fluid collections, renal failure, respiratory failure, and pleural effusion were associated with the development of ascites.


Assuntos
Ascite/epidemiologia , Pancreatite/epidemiologia , China/epidemiologia , Comorbidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Índice de Gravidade de Doença
14.
Med Sci Monit ; 27: e928118, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33678803

RESUMO

BACKGROUND Renal dysfunction is a leading cause of death in patients with acute pancreatitis (AP) and often occurs later than respiratory complications. Whether respiratory complications can predict renal impairment remains unclear. The aim of this study was to investigate the association between pleural effusion and renal dysfunction in AP. MATERIAL AND METHODS Medical records were reviewed from individuals who were hospitalized with AP from January 1, 2015 to December 31, 2019. The patients were divided into 2 groups, based on the presence or absence of pleural effusion on admission. Disease severity, renal function parameters, and outcomes were compared between the 2 groups. RESULTS A total of 222 patients were enrolled, 25 of whom had pleural effusion on admission and 197 who did not. Patients with AP who had pleural effusion had more serious illness (higher incidences of pancreatic inflammation, pancreatic fluid collection, and moderate-to-severe AP; worse Bedside Index for Severity in Acute Pancreatitis score; and a higher modified computed tomography severity index [all P<0.05]) plus worse outcomes (higher incidences of ventilation and vasopressor use [both P<0.05]). Moreover, patients with pleural effusion had a higher level of blood urea nitrogen and lower estimated glomerular filtration rate (both P<0.05). After adjustment for potential confounders, pleural effusion was a risk factor for renal failure in patients with AP (odds ratio 6.32, 95% confidence interval 1.08-36.78, P=0.040). CONCLUSIONS Pleural effusion is associated with severe renal dysfunction in AP. Therefore, efforts should be made to improve early recognition and timely treatment of renal failure by closely monitoring renal function in patients with AP and pleural effusion on admission.


Assuntos
Nefropatias/etiologia , Pancreatite/fisiopatologia , Derrame Pleural/fisiopatologia , Adulto , China/epidemiologia , Feminino , Humanos , Incidência , Nefropatias/complicações , Nefropatias/fisiopatologia , Masculino , Pessoa de Meia-Idade , Razão de Chances , Pancreatite/complicações , Estudos Retrospectivos , Fatores de Risco , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X/métodos
15.
Front Plant Sci ; 12: 796189, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069651

RESUMO

Sugarcane is one of the most important industrial crops globally. It is the second largest source of bioethanol, and a major crop for biomass-derived electricity and sugar worldwide. Smut, caused by Sporisorium scitamineum, is a major sugarcane disease in many countries, and is managed by smut-resistant varieties. In China, smut remains the single largest constraint for sugarcane production, and consequently it impacts the value of sugarcane as an energy feedstock. Quantitative trait loci (QTLs) associated with smut resistance and linked diagnostic markers are valuable tools for smut resistance breeding. Here, we developed an F1 population (192 progeny) by crossing two sugarcane varieties with contrasting smut resistance and used for genome-wide single nucleotide polymorphism (SNP) discovery and mapping, using a high-throughput genotyping method called "specific locus amplified fragment sequencing (SLAF-seq) and bulked-segregant RNA sequencing (BSR-seq). SLAF-seq generated 148,500 polymorphic SNP markers. Using SNP and previously identified SSR markers, an integrated genetic map with an average 1.96 cM marker interval was produced. With this genetic map and smut resistance scores of the F1 individuals from four crop years, 21 major QTLs were mapped, with a phenotypic variance explanation (PVE) > 8.0%. Among them, 10 QTLs were stable (repeatable) with PVEs ranging from 8.0 to 81.7%. Further, four QTLs were detected based on BSR-seq analysis. aligning major QTLs with the genome of a sugarcane progenitor Saccharum spontaneum, six markers were found co-localized. Markers located in QTLs and functional annotation of BSR-seq-derived unigenes helped identify four disease resistance candidate genes located in major QTLs. 77 SNPs from major QTLs were then converted to Kompetitive Allele-Specific PCR (KASP) markers, of which five were highly significantly linked to smut resistance. The co-localized QTLs, candidate resistance genes, and KASP markers identified in this study provide practically useful tools for marker-assisted sugarcane smut resistance breeding.

16.
Plants (Basel) ; 9(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717893

RESUMO

Adventitious root (AR) formation was enhanced following the treatment of sugarcane microshoots with indole-3-butyric acid (IBA) and 1-naphthalene acetic acid (NAA) combined, suggesting that auxin is a positive regulator of sugarcane microshoot AR formation. The transcriptome profile identified 1737 and 1268 differentially expressed genes (DEGs) in the basal tissues (5 mm) of sugarcane microshoots treated with IBA+NAA compared to nontreated control on the 3rd and 7th days post-auxin or water treatment (days post-treatment-dpt), respectively. To understand the molecular changes, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. This analysis showed that DEGs associated with the pathways were associated with plant hormone signaling, flavonoid and phenylpropanoid biosyntheses, cell cycle, and cell wall modification, and transcription factors could be involved in sugarcane microshoot AR formation. Furthermore, qRT-PCR analysis was used to validate the expression patterns of nine genes associated with root formation and growth, and the results were consistent with the RNA-seq results. Finally, a hypothetical hormonal regulatory working model of sugarcane microshoot AR formation is proposed. Our results provide valuable insights into the molecular processes associated with auxin-induced AR formation in sugarcane.

17.
J Am Chem Soc ; 142(19): 8790-8799, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32286828

RESUMO

The combination of distinct peptide ligation techniques to facilitate chemical protein synthesis represents one of the long-standing goals in the field. A new combination ligation method of N-to-C sequential native chemical ligation and Ser/Thr ligation (NCL-STL) is described for the first time. This method relies on the peptide salicylaldehyde S,S-propanedithioacetal (SALPDT)-ester prepared by a new 1,3-propanedithiol-mediated reaction. The peptide SALPDT-ester, which is compatible with NCL, can be fully activated by N-chlorosuccinimide (NCS)/AgNO3 in aqueous solution to afford peptide SAL-ester for use in the subsequent STL. The practicality of the combined NCL-STL method is illustrated by the synthesis of S-palmitoylated matrix-2 (S-palm M2) ion channel from Influenza A virus and S-palmitoylated interferon-induced transmembrane protein 3 (S-palm IFITM3). This approach expands the multiple-segments peptide ligation toolkit for producing important and complex custom-made protein samples by chemical protein synthesis.


Assuntos
Aldeídos/química , Ésteres/química , Proteínas de Membrana/síntese química , Propano/química , Proteínas de Ligação a RNA/síntese química , Serina/química , Compostos de Sulfidrila/química , Treonina/química , Proteínas da Matriz Viral/síntese química , Humanos , Proteínas de Membrana/química , Estrutura Molecular , Proteínas de Ligação a RNA/química , Proteínas da Matriz Viral/química
18.
Sci Adv ; 6(11): eaax2271, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32195335

RESUMO

Antibodies are essential for elucidating gene function. However, affordable technology for proteome-scale antibody generation does not exist. To address this, we developed Proteome Epitope Tag Antibody Library (PETAL) and its array. PETAL consists of 62,208 monoclonal antibodies (mAbs) against 15,199 peptides from diverse proteomes. PETAL harbors binders for a great multitude of proteins in nature due to antibody multispecificity, an intrinsic antibody feature. Distinctive combinations of 10,000 to 20,000 mAbs were found to target specific proteomes by array screening. Phenotype-specific mAb-protein pairs were found for maize and zebrafish samples. Immunofluorescence and flow cytometry mAbs for membrane proteins and chromatin immunoprecipitation-sequencing mAbs for transcription factors were identified from respective proteome-binding PETAL mAbs. Differential screening of cell surface proteomes of tumor and normal tissues identified internalizing tumor antigens for antibody-drug conjugates. By finding high-affinity mAbs at a fraction of current time and cost, PETAL enables proteome-scale antibody generation and target discovery.


Assuntos
Anticorpos Monoclonais Murinos/química , Epitopos/química , Proteoma/química , Células A549 , Animais , Células HEK293 , Células HL-60 , Células HeLa , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Células Jurkat , Células K562 , Células MCF-7 , Camundongos , Células PC-3 , Peptídeos , Células THP-1 , Células U937
19.
Angew Chem Int Ed Engl ; 59(13): 5178-5184, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-31846559

RESUMO

The preparation of native S-palmitoylated (S-palm) membrane proteins is one of the unsolved challenges in chemical protein synthesis. Herein, we report the first chemical synthesis of S-palm membrane proteins by removable-backbone-modification-assisted Ser/Thr ligation (RBMGABA -assisted STL). This method involves two critical steps: 1) synthesis of S-palm peptides by a new γ-aminobutyric acid based RBM (RBMGABA ) strategy, and 2) ligation of the S-palm RBM-modified peptides to give the desired S-palm product by the STL method. The utility of the RBMGABA -assisted STL method was demonstrated by the synthesis of rabbit S-palm sarcolipin (SLN) and S-palm matrix-2 (M2) ion channel. The synthesis of S-palm membrane proteins highlights the importance of developing non-NCL methods for chemical protein synthesis.


Assuntos
Proteínas de Membrana/química , Palmitatos/química , Peptídeos/síntese química , Serina/química , Treonina/química , Sequência de Aminoácidos , Aminobutiratos/química , Animais , Canais Iônicos/síntese química , Proteínas Musculares/síntese química , Proteolipídeos/síntese química , Coelhos , Técnicas de Síntese em Fase Sólida , Solubilidade
20.
BMC Infect Dis ; 19(1): 984, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752745

RESUMO

BACKGROUND: Burkholderia pseudomallei is a gram-negative bacterium and the causative pathogen of melioidosis, which manifests a variety ranges of infection symptoms. However, deep venous thrombosis (DVT) and pulmonary embolism (PE) secondary to bacteremic melioidosis are rarely documented in the literature. Herein, we reported a fatal case of melioidosis combined with DVT and PE. CASE PRESENTATION: A 54-year-old male construction worker and farmer with a history of diabetes was febrile, painful in left thigh, swelling in left lower limb, with chest tightness and shortness of breath for 4 days. He was later diagnosed as DVT of left lower extremity and PE. The culture of his blood, sputum and bone marrow samples grew B. pseudomallei. The subject was administrated with antibiotics (levofloxacin, cefoperazone/tazobactam, and imipenem) according to antimicrobial susceptibility testing and low molecular heparin for venous thrombosis. However, even after appropriate treatment, the patient deteriorated rapidly, and died 2 weeks after admission. CONCLUSIONS: This study enhanced awareness of the risk of B. pseudomallei bloodstream infection in those with diabetes. If a patient has predisposing factors of melioidosis, when DVT is suspected, active investigation and multiple therapeutic interventions should be implemented immediately to reduce mortality rate.


Assuntos
Melioidose/complicações , Embolia Pulmonar/etiologia , Trombose Venosa/etiologia , Antibacterianos/administração & dosagem , Burkholderia pseudomallei/classificação , Burkholderia pseudomallei/efeitos dos fármacos , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/isolamento & purificação , China , Evolução Fatal , Heparina/administração & dosagem , Humanos , Masculino , Melioidose/microbiologia , Pessoa de Meia-Idade , Embolia Pulmonar/tratamento farmacológico , Trombose Venosa/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA