Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Parasit Vectors ; 17(1): 204, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715075

RESUMO

BACKGROUND: Mosquito-borne viruses cause various infectious diseases in humans and animals. Oya virus (OYAV) and Ebinur Lake virus (EBIV), belonging to the genus Orthobunyavirus within the family Peribunyaviridae, are recognized as neglected viruses with the potential to pose threats to animal or public health. The evaluation of vector competence is essential for predicting the arbovirus transmission risk. METHODS: To investigate the range of mosquito vectors for OYAV (strain SZC50) and EBIV (strain Cu20-XJ), the susceptibility of four mosquito species (Culex pipiens pallens, Cx. quinquefasciatus, Aedes albopictus, and Ae. aegypti) was measured through artificial oral infection. Then, mosquito species with a high infection rate (IR) were chosen to further evaluate the dissemination rate (DR), transmission rate (TR), and transmission efficiency. The viral RNA in each mosquito sample was determined by RT-qPCR. RESULTS: The results revealed that for OYAV, Cx. pipiens pallens had the highest IR (up to 40.0%) among the four species, but the DR and TR were 4.8% and 0.0%, respectively. For EBIV, Cx. pipiens pallens and Cx. quinquefasciatus had higher IR compared to Ae. albopictus (1.7%). However, the EBIV RNA and infectious virus were detected in Cx. pipiens pallens, with a TR of up to 15.4% and a transmission efficiency of 3.3%. CONCLUSIONS: The findings indicate that Cx. pipiens pallens was susceptible to OYAV but had an extremely low risk of transmitting the virus. Culex pipiens pallens and Cx. quinquefasciatus were susceptible to EBIV, and Cx. pipiens pallens had a higher transmission risk to EBIV than Cx. quinquefasciatus.


Assuntos
Aedes , Culex , Mosquitos Vetores , Orthobunyavirus , Animais , Mosquitos Vetores/virologia , Aedes/virologia , Culex/virologia , Orthobunyavirus/genética , Orthobunyavirus/classificação , Orthobunyavirus/isolamento & purificação , RNA Viral/genética , Infecções por Bunyaviridae/transmissão , Infecções por Bunyaviridae/virologia
2.
Viruses ; 16(4)2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38675972

RESUMO

Orthobunyavirus is the largest and most diverse genus in the family Peribunyaviridae. Orthobunyaviruses are widely distributed globally and pose threats to human and animal health. Ebinur Lake virus (EBIV) is a newly classified Orthobunyavirus detected in China, Russia, and Kenya. This study explored the antiviral effects of two broad-spectrum antiviral drugs, favipiravir and ribavirin, in a BALB/c mouse model. Favipiravir significantly improved the clinical symptoms of infected mice, reduced viral titer and RNA copies in serum, and extended overall survival. The median survival times of mice in the vehicle- and favipiravir-treated groups were 5 and 7 days, respectively. Favipiravir significantly reduced virus titers 10- to 100-fold in sera at all three time points compared to vehicle-treated mice. And favipiravir treatment effectively reduced the virus copies by approximately 10-fold across the three time points, relative to vehicle-treated mice. The findings expand the antiviral spectrum of favipiravir for orthobunyaviruses in vivo.


Assuntos
Amidas , Antivirais , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Pirazinas , Carga Viral , Animais , Pirazinas/uso terapêutico , Pirazinas/farmacologia , Amidas/farmacologia , Amidas/uso terapêutico , Antivirais/uso terapêutico , Antivirais/farmacologia , Camundongos , Carga Viral/efeitos dos fármacos , Feminino , Ribavirina/uso terapêutico , Ribavirina/farmacologia , Infecções por Vírus de RNA/tratamento farmacológico , Infecções por Vírus de RNA/virologia
3.
mSphere ; 9(4): e0006224, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38530016

RESUMO

Mosquito-borne viruses cause various infectious diseases in humans and animals. Tibet orbivirus (TIBOV), a newly identified arbovirus, efficiently replicates in different types of vertebrate and mosquito cells, with its neutralizing antibodies detected in cattle and goats. However, despite being isolated from Culicoides midges, Anopheles, and Culex mosquitoes, there has been a notable absence of systematic studies on its vector competence. Thus, in this study, Aedes aegypti and Culex pipiens pallens were reared in the laboratory to measure vector susceptibility through blood-feeding infection. Furthermore, RNA sequencing was used to examine the overall alterations in the Ae. aegypti transcriptome following TIBOV infection. The results revealed that Ae. aegypti exhibited a high susceptibility to TIBOV compared to Cx. p. pallens. Effective replication of the virus in Ae. aegypti midguts occurred when the blood-feeding titer of TIBOV exceeded 105 plaque-forming units mL-1. Nevertheless, only a few TIBOV RNA-positive samples were detected in the saliva of Ae. aegypti and Cx. p. pallens, suggesting that these mosquito species may not be the primary vectors for TIBOV. Moreover, at 2 dpi of TIBOV, numerous antimicrobial peptides downstream of the Toll and Imd signaling pathways were significantly downregulated in Ae. aegypti, indicating that TIBOV suppressed mosquitos' defense to survive in the vector at an early stage. Subsequently, the stress-activated protein kinase JNK, a crucial component of the MAPK signaling pathway, exhibited significant upregulation. Certain genes were also enriched in the MAPK signaling pathway in TIBOV-infected Ae. aegypti at 7 dpi.IMPORTANCETibet orbivirus (TIBOV) is an understudied arbovirus of the genus Orbivirus. Our study is the first-ever attempt to assess the vector susceptibility of this virus in two important mosquito vectors, Aedes aegypti and Culex pipiens pallens. Additionally, we present transcriptome data detailing the interaction between TIBOV and the immune system of Ae. aegypti, which expands the knowledge about orbivirus infection and its interaction with mosquitoes.


Assuntos
Aedes , Culex , Mosquitos Vetores , Orbivirus , Animais , Aedes/virologia , Aedes/genética , Culex/virologia , Culex/genética , Mosquitos Vetores/virologia , Mosquitos Vetores/genética , Orbivirus/genética , Orbivirus/fisiologia , Feminino , Replicação Viral , Saliva/virologia , Transcriptoma , Tibet
4.
Mol Hortic ; 4(1): 10, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500223

RESUMO

Artemisinin is primarily synthesized and stored in the subepidermal space of the glandular trichomes of Artemisia annua. The augmentation of trichome density has been demonstrated to enhance artemisinin yield. However, existing literature lacks insights into the correlation between the stratum corneum and trichomes. This study aims to unravel the involvement of TrichomeLess Regulator 3 (TLR3), which encodes the transcription factor, in artemisinin biosynthesis and its potential association with the stratum corneum. TLR3 was identified as a candidate gene through transcriptome analysis. The role of TLR3 in trichome development and morphology was investigated using yeast two-hybrid, pull-down analysis, and RNA electrophoresis mobility assay. Our research revealed that TLR3 negatively regulates trichome development. It modulates the morphology of Arabidopsis thaliana trichomes by inhibiting branching and inducing the formation of abnormal trichomes in Artemisia annua. Overexpression of the TLR3 gene disrupts the arrangement of the stratum corneum and reduces artemisinin content. Simultaneously, TLR3 possesses the capacity to regulate stratum corneum development and trichome follicle morphology by interacting with TRICHOME AND ARTEMISININ REGULATOR 1, and CycTL. Consequently, our findings underscore the pivotal role of TLR3 in the development of glandular trichomes and stratum corneum biosynthesis, thereby influencing the morphology of Artemisia annua trichomes.

5.
J Med Chem ; 67(6): 4855-4869, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38489246

RESUMO

Atopic dermatitis is a chronic relapsing skin disease characterized by recurrent, pruritic, localized eczema, while PDE4 inhibitors have been reported to be effective as antiatopic dermatitis agents. 3',4-O-dimethylcedrusin (DCN) is a natural dihydrobenzofuran neolignan isolated from Magnolia biondii with moderate potency against PDE4 (IC50 = 3.26 ± 0.28 µM) and a binding mode similar to that of apremilast, an approved PDE4 inhibitor for the treatment of psoriasis. The structure-based optimization of DCN led to the identification of 7b-1 that showed high inhibitory potency on PDE4 (IC50 = 0.17 ± 0.02 µM), good anti-TNF-α activity (EC50 = 0.19 ± 0.10 µM), remarkable selectivity profile, and good skin permeability. The topical treatment of 7b-1 resulted in the significant benefits of pharmacological intervention in a DNCB-induced atopic dermatitis-like mice model, demonstrating its potential for the development of novel antiatopic dermatitis agents.


Assuntos
Dermatite Atópica , Lignanas , Inibidores da Fosfodiesterase 4 , Camundongos , Animais , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Dinitroclorobenzeno/farmacologia , Dinitroclorobenzeno/uso terapêutico , Lignanas/farmacologia , Lignanas/uso terapêutico , Inibidores do Fator de Necrose Tumoral/farmacologia , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Citocinas/farmacologia , Pele
6.
Quant Imaging Med Surg ; 14(1): 432-446, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38223051

RESUMO

Background: Risk factors for colorectal cancer (CRC) affect the way patients are subsequently treated and their prognosis. Dual-energy computerized tomography (DECT) is an advanced imaging technique that enables the quantitative evaluation of lesions. This study aimed to evaluate the quality of DECT images based on the Mono+ algorithm in CRC, and based on this, to assess the value of DECT in the diagnosis of CRC risk factors. Methods: This prospective study was performed from 2021 to 2023. A dual-phase DECT protocol was established for consecutive patients with primary CRC. The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), overall image quality, lesion delineation, and image noise of the dual-phase DECT images were assessed. Next, the optimal energy-level image was selected to analyze the iodine concentration (IC), normalized iodine concentration (NIC), effective atomic number, electron density, dual-energy index (DEI), and slope of the energy spectrum curve within the tumor for the high- and low-risk CRC groups. A multifactor binary logistic regression analysis was used to construct a differential diagnostic regression model for high- and low-risk CRC, receiver operating characteristic (ROC) curves were plotted, and the area under the curve (AUC) was calculated to assess the diagnostic value of the model. Results: A total of 74 patients were enrolled in this study, of whom 41 had high-risk factors and 33 had low-risk factors. The SNR and CNR were best at 40 keV virtual monoenergetic imaging (VMI) based on the Mono+ algorithm (VMI+) (SNR 8.79±1.27, P<0.001; CNR 14.89±1.77, P=0.027). The overall image quality and lesion contours were best at 60 keV VMI+ and 40 keV VMI+, respectively (P=0.001). Among all the DECT parameters, the arterial phase (AP)-IC, NIC, DEI, energy spectrum curve, and venous phase-NIC differed significantly between the two groups. The AP-IC was the optimal DECT parameter for predicting high- and low-risk CRC with AUC, sensitivity, specificity, and cut-off values of 0.96, 97.06%, 87.80%, and 2.94, respectively, and the 95% confidence interval (CI) of the AUC was 0.88-0.99. Integrating the clinical factors and DECT parameters, the AUC, sensitivity, specificity, and predictive accuracy of the model were 0.99, 100.00%, 92.68%, and 94.67%, respectively, and the 95% CI of the AUC was 0.93-1.00. Conclusions: The DECT parameters based on 40 keV noise-optimized VMI+ reconstruction images depicted the CRC tumors best, and the clinical DECT model may have significant implications for the preoperative prediction of high-risk factors in CRC patients.

7.
Nanomaterials (Basel) ; 13(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37836362

RESUMO

Studying the mechanisms of the spin Hall effect (SHE) is essential for the fundamental understanding of spintronic physics. By now, despite the intensive studies of SHE on heavy metal (HM)/metallic magnet heterostructures, the SHE on HM/ferrimagnetic insulator (FMI) heterostructures still remains elusive. Here, we study the mechanism of SHE in the Pt/Tm3Fe5O12 (TmIG) heterostructure. We first tune the crystallinity and resistivity of Pt by an annealing method, and then study the spin-orbit torque (SOT) in the tuned-Pt/TmIG devices. The SOT generation efficiency per unit electric field and spin Hall angle were obtained, which are insensitive to the annealing temperature. We further demonstrate that the intrinsic contribution in the moderately dirty regime is responsible for the SHE in our Pt/TmIG bilayer. Our study provides an important piece of information for the SHE in FMI-based spintronic physics.

8.
Respir Res ; 24(1): 69, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879222

RESUMO

BACKGROUND: Airway epithelium is the first barrier against environmental insults, and epithelial barrier dysfunction caused by cigarette smoke (CS) is particularly relevant to chronic obstructive pulmonary disease (COPD) progression. Our study was to determine whether Azithromycin (AZI) ameliorates CS-induced airway epithelial barrier dysfunction and the underlying mechanisms. METHODS: Primary bronchial epithelial cells (PBECs), human bronchial epithelial cells (HBECs), Sprague Dawley rats and nuclear factor erythroid 2-related factor 2 (Nrf2)-/- mice were pretreated with AZI and subsequently exposed to CS. Transepithelial electronic resistance (TEER), junction proteins as well as pro-inflammatory cytokines and apoptosis markers were examined to assess epithelial barrier dysfunction. Metabolomics study was applied to explore the underlying mechanism of AZI. RESULTS: CS-induced TEER decline and intercellular junction destruction, accompanied with inflammatory response and cell apoptosis in PBECs were restored by AZI dose-dependently, which were also observed in CS-exposed rats. Mechanistically, GSH metabolism pathway was identified as the top differentially impacted pathway and AZI treatment upregulated the activities of glutamate cysteine ligase (GCL) and the contents of metabolites in GSH metabolic pathway. Furthermore, AZI apparently reversed CS-induced Nrf2 suppression, and similar effects on airway epithelial barrier dysfunction were also found for Nrf2 agonist tert-butylhydroquinone and vitamin C. Finally, deletion of Nrf2 in both HBECs and C57BL/6N mice aggravated CS-induced GSH metabolism imbalance to disrupt airway epithelial barrier and partially deprived the effects of AZI. CONCLUSION: These findings suggest that the clinical benefits of AZI for COPD management are related with the protection of CS-induced airway epithelial barrier dysfunction via activating Nrf2/GCL/GSH pathway, providing potential therapeutic strategies for COPD.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Ratos , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Glutamato-Cisteína Ligase , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2 , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/prevenção & controle , Ratos Sprague-Dawley , Transdução de Sinais , Glutationa/metabolismo
9.
ACS Omega ; 7(41): 36598-36610, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36268464

RESUMO

This work was aimed to elucidate the mechanism of action of Han-Shi-Yu-Fei-decoction (HSYFD) for treating patients with mild coronavirus disease 2019 (COVID-19) based on clinical symptom-guided network pharmacology. Experimentally, an ultra-high performance liquid chromatography technique coupled with quadrupole time-of-flight mass spectrometry method was used to profile the chemical components and the absorbed prototype constituents in rat serum after its oral administration, and 11 out of 108 compounds were identified. Calculatingly, the disease targets of Han-Shi-Yu-Fei symptoms of COVID-19 were constructed through the TCMIP V2.0 database. The subsequent network pharmacology and molecular docking analysis explored the molecular mechanism of the absorbed prototype constituents in the treatment of COVID-19. A total of 42 HSYFD targets oriented by COVID-19 clinical symptom were obtained, with EGFR, TP53, TNF, JAK2, NR3C1, TH, COMT, and DRD2 as the core targets. Enriched pathway analysis yielded multiple COVID-19-related signaling pathways, such as the PI3K/AKT signaling pathway and JAK-STAT pathway. Molecular docking showed that the key compounds, such as 6-gingerol, 10-gingerol, and scopoletin, had high binding activity to the core targets like COMT, JAK2, and NR3C1. Our work also verified the feasibility of clinical symptom-guided network pharmacology analysis of chemical compounds, and provided a possible agreement between the points of views of traditional Chinese medicine and western medicine on the disease.

10.
J Vis Exp ; (186)2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36121272

RESUMO

With the broad application of sequencing technologies, many novel virus-like sequences have been discovered in arthropods, including mosquitoes. The two main categories of these new mosquito-associated viruses are "mosquito-borne viruses (MBVs)" and "mosquito-specific viruses (MSVs)". These novel viruses might be pathogenic to both vertebrates and mosquitoes, or they could just be symbiotic with mosquitoes. Entity viruses are essential to confirm the biological characters of these viruses. Thus, a detailed protocol has been described here for virus isolation and amplification from field-collected mosquitoes. First, the mosquito samples were prepared as supernatants of mosquito homogenates. After centrifugation twice, the supernatants were then inoculated into either mosquito cell line C6/36 or vertebrate cell line BHK-21 for virus amplification. After 7 days, the supernatants were collected as the P1 supernatants and stored at -80 °C. Next, P1 supernatants were passaged twice more in C6/36 or BHK-21 cells while the cell status was being checked daily. When cytopathogenic effect (CPE) on the cells was discovered, these supernatants were collected and used to identify viruses. This protocol serves as the foundation for future research on mosquito-associated viruses, including MBVs and MSVs.


Assuntos
Culicidae , Flavivirus , Vírus , Animais , Vírus Satélites , Vertebrados
11.
Front Public Health ; 10: 940956, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910897

RESUMO

Background: COVID-19 is a respiratory illness caused by SARS-CoV-2. The most recent variant is Omicron (line B.1.1.529), which was first identified in South Africa in November 2021. The concern with this variant is the ineffectiveness of vaccines currently available. We aim to systematically evaluate the effectiveness of the currently available COVID-19 vaccines and boosters for the Omicron variant. Methods: We searched the PubMed, Embase, the Cochrane Library and Web of Science databases from inception to June 5th, 2022. Studies that examined the effectiveness of SARS-CoV-2 vaccines against the Omicron variant infection were included. Random-effects model was used to estimate the pooled vaccine effectiveness against the Omicron variant. Results: A total of 13 studies were included to evaluate the effectiveness of the vaccine against the Omicron variant, and 11 studies were included to compare the effectiveness between the two-dose and three-dose (booster) vaccinations. Full vaccination (two-dose with or without booster) showed a protective effect against the Omicron variant compared to no vaccination (OR = 0.62, 95% CI: 0.56-0.69), while the effectiveness decreased significantly over 6 months after the last dose. The two-dose vaccination plus booster provided better protection against the Omicron variant compared to the two-dose vaccination without booster (OR = 0.60, 95% CI: 0.52-0.68). Additional analysis was performed for the most commonly used vaccines in the United Staes: BNT162b2(Pfizer) (OR = 0.65, 95% CI: 0.52-0.82) and mRNA-1273(Moderna) (OR = 0.67, 95% CI: 0.58-0.88) vaccines in the US, which showed similar effectiveness compared to no vaccination. Conclusions: The full dose of SARS-CoV-2 vaccination effectively reduces infection from the SARS-CoV-2 Omicron variant; however, the effectiveness wanes over time. The booster vaccine provides additional protection against the Omicron variant.


Assuntos
COVID-19 , Vacinas Virais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2 , Eficácia de Vacinas
12.
Med Nov Technol Devices ; 15: 100159, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35937968

RESUMO

The mortality rate of the recent global pandemic corona virus disease 2019 (COVID-19) is currently as high as 7%. The SARS-CoV-2 virus is the culprit behind COVID-19. SARS-CoV-2 is an enveloped single-stranded RNA virus, the genome encodes four types of the structural proteins: S protein, E protein (envelope protein), M protein (matrix protein) and N protein (nucleocapsid protein). In COVID-19, monoclonal antibodies have played a significant role in diagnosis and treatment. This article briefly introduced the development of monoclonal antibodies targeting on S protein and N protein, which represents the main direction of monoclonal antibody drugs used in the diagnosis and treatment of COVID-19. Meanwhile, the traditional Chinese medicine also plays important role in the fight against COVID-19 by regulating human immunity. The article introduced the use of traditional Chinese medicine in fighting against COVID-19.

14.
J Environ Sci (China) ; 119: 130-138, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35934458

RESUMO

Current knowledge about the transformation of total mercury and methylmercury (MeHg) in aerobic composting process is limited. In this study, the composition and transformation of mercury and dissovled organic matter (DOM) in aerobic composting process of municipal sewage sludge were were comprehensively characterized, and the differences among the three C/N ratio (20, 26 and 30) were investigated. The main form of mercury in C/N 20 and 26 was organo-chelated Hg (F3, 46%-60%); while the main form of mercury in C/N 30 was mercuric sulfide (F5, 64%-70%). The main component of DOM in C/N 20 and 26 were tyrosine-like substance (C1, 53%-76%) while the main fractions in C/N 30 were tyrosine-like substance (C1, 28%-37%) and fulvic-like substance (C2, 17%-39%). The mercury and DOM varied significantly during the 9 days composting process. Compared to C/N 20 and 26, C/N 30 produced the less MeHg after aerobic composting process, with values of 658% (C/N 20), 1400% (C/N 26) and 139% (C/N 30) of the initial, respectively. Meanwhile, C/N 30 produced the best compost showed greater degree of DOM molecular condensation and humification. Hg fraction had been altered by DOM, as indicated by a significant correlation between mercury species and DOM components. Notably, C/N 30 should be used as an appropriate C/N ratio to control the methylation processes of mercury and degration of DOM.


Assuntos
Compostagem , Mercúrio , Compostos de Metilmercúrio , Matéria Orgânica Dissolvida , Esgotos , Tirosina
15.
DNA Cell Biol ; 41(8): 778-787, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35867069

RESUMO

The immune response mediated by Th17 cells is essential in the pathogenesis of periodontitis. Emerging evidence has demonstrated that lipopolysaccharide from Porphyromonas gingivalis (Pg-LPS) could promote Th17-cell differentiation directly, while the downstream signaling remains elusive. This study was aimed to explore the role of JMJD3 (a JmjC family histone demethylase) and signal transducers and activators of transcription 3 (STAT3) in Th17-cell differentiation triggered by Pg-LPS and clarify the interaction between them. We found that the expression of JMJD3 and STAT3 was significantly increased under Th17-polarizing conditions. Pg-LPS could promote Th17-cell differentiation from CD4+ T cells, with an increased expression of JMJD3 and STAT3 compared to the culture without Pg-LPS. The coimmunoprecipitation results showed that the interactions of JMJD3 and STAT3, STAT3 and retinoid-related orphan nuclear receptor γt (RORγt) were enhanced following Pg-LPS stimulation during Th17-cell differentiation. Further blocking assays were performed and the results showed that inhibition of STAT3 or JMJD3 both suppressed the Th17-cell differentiation, JMJD3 inhibitor could reduce the expression of STAT3 and p-STAT3, while JMJD3 expression was not affected when STAT3 was inhibited. Taken together, this study found that JMJD3 could promote Pg-LPS induced Th17-cell differentiation by modulating the STAT3-RORc signaling pathway.


Assuntos
Histona Desmetilases com o Domínio Jumonji , Células Th17 , Diferenciação Celular/efeitos dos fármacos , Humanos , Lipopolissacarídeos/farmacologia , Receptores Nucleares Órfãos/metabolismo , Porphyromonas gingivalis/química , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
16.
PLoS Negl Trop Dis ; 16(7): e0010642, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35849620

RESUMO

The global impact of mosquito-borne diseases has increased significantly over recent decades. Ebinur Lake virus (EBIV), a newly classified orthobunyavirus, is reported to be highly pathogenic in adult mice. The evaluation of vector competence is essential for predicting the arbovirus transmission risk. Here, Aedes aegypti was applied to evaluate EBIV infection and dissemination in mosquitos. Our experiments indicated that Ae. aegypti had the possibility to spread EBIV (with a transmission rate of up to 11.8% at 14 days post-infection) through biting, with the highest viral dose in a single mosquito's saliva reaching 6.3 plaque-forming units. The highest infection, dissemination and ovary infection rates were 70%, 42.9%, and 29.4%, respectively. The high viral infection rates in Ae. aegypti ovaries imply the possibility of EBIV vertical transmission. Ae. aegypti was highly susceptible to intrathoracic infection and the saliva-positive rate reached 90% at 10 days post-infection. Transcriptomic analysis revealed Toll and Imd signaling pathways were implicated in the mosquito's defensive response to EBIV infection. Defensin C and chitinase 10 were continuously downregulated in mosquitoes infected via intrathoracic inoculation of EBIV. Comprehensive analysis of the vector competence of Ae. aegypti for EBIV in laboratory has indicated the potential risk of EBIV transmission through mosquitoes. Moreover, our findings support a complex interplay between EBIV and the immune system of mosquito, which could affect its vector competence.


Assuntos
Aedes , Orthobunyavirus , Infecção por Zika virus , Zika virus , Animais , Feminino , Imunidade , Camundongos , Mosquitos Vetores , Carga Viral , Zika virus/fisiologia
17.
Sci Total Environ ; 838(Pt 4): 156530, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35679934

RESUMO

The Prussian blue (PB) blending membranes are promising candidates for the removal of trace radionuclide Cs+. Constructing a membrane with high flux and selectivity are challenging in its practical application. Here, a novel polyvinylidene fluoride (PVDF)-PB-graphene oxide (GO) modified membrane was fabricated via phase inversion for trace radionuclide cesium (137Cs) removal from water. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to analyze chemical composition and morphology of the membrane, and the properties in terms of water flux and Cs+ removal were studied under different PB dosage, pH and co-existing ions conditions. It was observed that the addition of GO improved the dispersion of PB, and the PVDF-PB-GO membrane presented the highest Cs+ removal efficiency (99.6 %) and water flux (1638.2 LMH/bar) at pH = 7 with 0.1 wt% GO and 5 wt% PB. In addition, Langmuir and pseudo-second-order kinetics models fitted well for Cs+ adsorption by the PVDF-PB-GO membrane, illustrating that the Cs+ was removed via chemical adsorption dominated by Fe(CN)64- defect sites of PB and the oxygen groups of GO. Furthermore, the membrane showed a significant selectivity and reusability towards trace radioactive cesium, even in the presence of excess co-existing ions and in real water, which strongly verified that the modified membrane had application potential.


Assuntos
Grafite , Poluentes Químicos da Água , Adsorção , Césio/química , Ferrocianetos , Polímeros de Fluorcarboneto , Grafite/química , Íons/análise , Cinética , Polivinil , Águas Residuárias/química , Água , Poluentes Químicos da Água/análise
18.
Front Pharmacol ; 13: 788388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721129

RESUMO

Liver fibrosis is a disease with complex pathological mechanisms. Penthorum chinense Pursh (P. chinense) is a traditional Chinese medicine (TCM) for liver injury treatment. However, the pharmacological mechanisms of P. chinense on liver fibrosis have not been investigated and clarified clearly. This study was designed to investigate the chemicals in P. chinense and explore its effect on liver fibrosis. First, we developed a highly efficient method, called DDA-assisted DIA, which can both broaden mass spectrometry (MS) coverage and MS2 quality. In DDA-assisted DIA, data-dependent acquisition (DDA) and data-independent acquisition (DIA) were merged to construct a molecular network, in which 1,094 mass features were retained in Penthorum chinense Pursh (P. chinense). Out of these, 169 compounds were identified based on both MS1 and MS2 analysis. After that, based on a network pharmacology study, 94 bioactive compounds and 440 targets of P. chinense associated with liver fibrosis were obtained, forming a tight compound-target network. Meanwhile, the network pharmacology experimental results showed that multiple pathways interacted with the HIF-1 pathway, which was first identified involved in P. chinense. It could be observed that some proteins, such as TNF-α, Timp1, and HO-1, were involved in the HIF-1 pathway. Furthermore, the pharmacological effects of P. chinense on these proteins were verified by CCl4-induced rat liver fibrosis, and P. chinense was found to improve liver functions through regulating TNF-α, Timp1, and HO-1 expressions. In summary, DDA-assisted DIA could provide more detailed compound information, which will help us to annotate the ingredients of TCM, and combination with computerized network pharmacology provided a theoretical basis for revealing the mechanism of P. chinense.

19.
Viruses ; 14(6)2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35746769

RESUMO

Mosquito-specific flaviviruses comprise a group of insect-specific viruses with a single positive RNA, which can affect the duplication of mosquito-borne viruses and the life growth of mosquitoes, and which have the potential to be developed as a vaccine platform for mosquito-borne viruses. In this study, a strain of mosquito flavivirus (MFV) YN15-283-02 was detected in Culicoides collected from Yunnan, China. The isolation of the purified MFV YN15-283-02 from cell culture failed, and the virus was then rescued by an infectious clone. To study the biological features of MFV YN15-283-02 in vitro and in vivo, electron microscopy, phylogenetic tree, and viral growth kinetic analyses were performed in both cell lines and mosquitoes. The rescued MFV (rMFV) YN15-283-02 duplicated and reached a peak in C6/36 cells at 6 d.p.i. with approximately 2 × 106 RNA copies/µL (RNA to cell ratio of 0.1), but without displaying a cytopathic effect. In addition, the infection rate for the rMFV in Ae.aegypti show a low level in both larvae (≤15%) and adult mosquitoes (≤12%).


Assuntos
Aedes , Ceratopogonidae , Culicidae , Flavivirus , Vírus de Insetos , Animais , China , Vírus de Insetos/genética , Filogenia , RNA
20.
Front Pharmacol ; 13: 744915, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401173

RESUMO

Chaenomeles speciosa (Sweet) Nakai has been long used as a folk medicine for rheumatic diseases treatment. This study aimed to investigate the effects and underlying mechanism of polysaccharides in Chaenomeles speciosa (CSP) on the pro-inflammatory cytokines and MAPK pathway in complete Freund's adjuvant (CFA)-induced arthritis and LPS-induced NR8383 cells. We used acetic acid (HAc)-induced writhing and CFA induced paw edema to determine the analgesic activity and anti-inflammatory activity, respectively. CFA rats were administered CSP (12.5, 25.0, and 50.0 mg/kg) daily for 3 weeks via oral gavage. The analgesic test was done using three different doses of the extract (50, 100, and 200 mg/kg). The anti-arthritic evaluation involved testing for paw swelling, swelling inhibition, and histological analysis in CFA rats. Finally, ELISA, western blot, qRT-PCR were done to determine the effect of CSP on the activation of MAPK pathway, production of pro-inflammatory cytokines in lipopolysaccharide (LPS)-stimulated NR838 macrophage cells. In pain models, oral uptake of CSP greatly reduced pain perception. Furthermore, in CFA rats, CSP substantially decreased paw swelling as well as synovial tissue proliferation and inflammatory cell infiltration. In addition, CSP was shown to inhibit pro-inflammatory cytokines (TNF-α, IL-1ß, and COX-2) as well as JNK and ERK1/2 phosphorylation in LPS-stimulated NR8383 cells. Thus, pro-inflammatory cytokine secretion and MAPK signaling downregulation promoted the analgesic and anti-arthritic effects of CSP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA