Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Colloid Interface Sci ; 678(Pt C): 819-828, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39312870

RESUMO

Traditional kinesiology tape (KT) is an elastic fabric tape that clinicians and sports trainers widely use for managing ankle sprains. However, inadequate mechanical properties, adhesive strength, water resistance, and micro-damage generation could affect the longevity of the tape on the skin during physical activity and sweating. Therefore, autonomous room-temperature self-healing elastomers with robust mechanical properties and adequate adhesion to the skin are highly desirable to replace traditional KT. Ionic aggregates were introduced into the polymer matrix via electrostatic attraction between polymer colloid and polyelectrolyte to achieve such elastic tape. These ionic aggregates act as physical crosslink points to enhance mechanical properties and dissociate at room temperature to provide self-healing functions. The obtained elastic tape possesses a tensile strength of 3.7 MPa, elongation of 940 %, toughness of 16.6 MJ∙m-3, and self-healing efficiency of 90 % for 2 h at room temperature. It also exhibits adequate reversible adhesion on the skin via van der Waals force and electrostatic interaction in both dry and wet conditions. The new elastic tapes have great potential in biomedical engineering for preventing and rehabilitating ankle sprain.


Assuntos
Temperatura , Humanos , Traumatismos do Tornozelo/prevenção & controle , Entorses e Distensões/prevenção & controle , Fita Atlética , Resistência à Tração , Eletricidade Estática , Íons/química , Elastômeros/química , Propriedades de Superfície , Elasticidade
2.
Front Aging Neurosci ; 16: 1458494, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39381138

RESUMO

Background: Hypertension (HT) is a common chronic disease in older adults. It not only leads to dizziness and other symptoms affecting balance in older adults with HT but also affects the hemodynamics of the cerebral cortex. At present, potential neural mechanisms of balance control in older adults with HT are still unclear. Therefore, this study aimed to explore the differences in the center of pressure (COP) and cerebral cortex activation between older adults with HT and normotension (NT) during standing balance tasks. This study May provide guidance for the early detection of the risk of falls among older adults with HT and the development of clinical rehabilitation strategies. Methods: In this cross-sectional study, 30 older adults with NT (NT group) and 27 older adults with HT (HT group) were subjected to three conditions: task 1, standing with eyes open on a stable surface; task 2, standing with eyes closed on a stable surface; and task 3, standing with eyes open on the surface of the foam pad. Cortical hemodynamic reactions were measured using functional near-infrared spectroscopy, and COP parameters were measured using a force plate. Results: The mean velocity of the COP in the medial-lateral direction in the NT group was significantly higher than that in the HT group (F = 5.955, p = 0.018) during task 3. When proprioception was disturbed, the activation of the left premotor cortex and supplementary motor cortex in the HT group was significantly lower than that in the NT group (F = 14.381, p < 0.001). Conclusion: The standing balance function of older adults with HT does not appear to be worse based on COP parameters than those of older adults with NT. This study revealed that the changes in the central cortex related to standing balance appear to be more indicative of balance control deficits in older adults with HT than changes in peripheral COP parameters, suggesting the importance of the early evaluation of cortical activation in older adults with HT at risk of falls.

3.
Age Ageing ; 53(8)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39148435

RESUMO

BACKGROUND: Pain is a dynamic experience that varies over time, but it remains unknown whether trajectories of pain are associated with subsequent cognitive decline. The purpose of this study was to identify distinct trajectories of pain presence and activity-limiting pain and investigate their longitudinal associations with the rate of subsequent cognitive decline in older adults. METHODS: A total of 5685 participants from the English Longitudinal Study of Ageing (ELSA) and 7619 participants from the Health and Retirement Study (HRS) were included. Pain presence trajectories were identified over eight years in the ELSA and 10 years in the HRS, while trajectories of activity-limiting pain were identified over 10 years in the HRS. We utilised linear mixed-effects models to investigate the long-term relationship between pain trajectories and the rate of cognitive decline across various domains, including memory, orientation, executive function and global cognition. RESULTS: Three pain presence trajectories were identified. Moderate-increasing and high-stable groups exhibited steeper declines in global cognition than the low-stable group. Furthermore, individuals in the moderate-increasing group experienced a more rapid decline in executive function, while the high-stable group showed a faster decline in orientation function. Two trajectories of activity-limiting pain were identified, with the moderate-increasing group experiencing a faster decline in orientation function and global cognition. CONCLUSIONS: The trajectories of both pain presence and activity-limiting pain are linked to the rate of subsequent cognitive decline among older people. Interventions for specific pain trajectories might help to delay the decline rate of cognition in specific domains.


Assuntos
Disfunção Cognitiva , Dor , Humanos , Idoso , Masculino , Feminino , Estudos Longitudinais , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/psicologia , Disfunção Cognitiva/diagnóstico , Dor/psicologia , Dor/diagnóstico , Dor/epidemiologia , Cognição , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Fatores de Tempo , Envelhecimento/psicologia , Função Executiva , Fatores de Risco , Inglaterra/epidemiologia , Fatores Etários
4.
Int J Med Sci ; 21(10): 1945-1963, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113894

RESUMO

Background: Both observational studies and clinical trials have demonstrated a link between the gut microbiota and the geriatric syndrome. Nevertheless, the exact nature of this relationship, particularly concerning causality, remains elusive. Mendelian randomization (MR) is a method of inference based on genetic variation to assess the causal relationship between an exposure and an outcome. In this study, we conducted a two-sample Mendelian randomization (TSMR) study to fully reveal the potential genetic causal effects of gut microbiota on geriatric syndromes. Methods: This study used data from genome wide association studies (GWAS) to investigate causal relationships between the gut microbiota and geriatric syndromes, including frailty, Parkinson's disease (PD), delirium, insomnia, and depression. The primary causal relationships were evaluated using the inverse-variance weighted method, MR Egger, simple mode, weighted mode and weighted median. To assess the robustness of the results, horizontal pleiotropy was examined through MR-Egger intercept and MR-presso methods. Heterogeneity was assessed using Cochran's Q test, and sensitivity was evaluated via the leave-one-out method. Results: We identified 41 probable causal relationships between gut microbiota and five geriatric syndrome-associated illnesses using the inverse-variance weighted method. Frailty showed five positive and two negative causal relationships, while PD revealed three positive and four negative causal connections. Delirium showed three positive and two negative causal relationships. Similarly, insomnia demonstrated nine positive and two negative causal connections, while depression presented nine positive and two negative causal relationships. Conclusions: Using the TSMR method and data from the public GWAS database and, we observed associations between specific microbiota groups and geriatric syndromes. These findings suggest a potential role of gut microbiota in the development of geriatric syndromes, providing valuable insights for further research into the causal relationship between gut microbiota and these syndromes.


Assuntos
Microbioma Gastrointestinal , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Humanos , Microbioma Gastrointestinal/genética , Idoso , Fragilidade/genética , Fragilidade/microbiologia , Doença de Parkinson/genética , Doença de Parkinson/microbiologia , Síndrome , Depressão/genética , Depressão/microbiologia , Distúrbios do Início e da Manutenção do Sono/genética , Distúrbios do Início e da Manutenção do Sono/microbiologia
5.
Brain Behav ; 14(7): e3568, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988039

RESUMO

BACKGROUND: Hypertension increases the risk of cognitive impairment and related dementia, causing impaired executive function and unusual gait parameters. However, the mechanism of neural function illustrating this is unclear. Our research aimed to explore the differences of cerebral cortex activation, gait parameters, and working memory performance between healthy older adults (HA) and older hypertensive (HT) patients when performing cognitive and walking tasks. METHOD: A total of 36 subjects, including 12 healthy older adults and 24 older hypertensive patients were asked to perform series conditions including single cognitive task (SC), single walking task (SW), and dual-task (DT), wearing functional near-infrared spectroscopy (fNIRS) equipment and Intelligent Device for Energy Expenditure and Activity equipment to record cortical hemodynamic reactions and various gait parameters. RESULTS: The left somatosensory cortex (L-S1) and bilateral supplementary motor area (SMA) showed higher cortical activation (p < .05) than HA when HT performed DT. The intragroup comparison showed that HT had higher cortical activation (p < .05) when performing DT as SW. The cognitive performance of HT was significantly worse (p < .05) than HA when executing SC. The activation of the L-S1, L-M1, and bilateral SMA in HT were significantly higher during SW (p < .05). CONCLUSION: Hypertension can lead to cognitive impairment in the elderly, including executive function and walking function decline. As a result of these functional declines, elderly patients with hypertension are unable to efficiently allocate brain resources to support more difficult cognitive interference tasks and need to meet more complex task demands by activating more brain regions.


Assuntos
Córtex Cerebral , Marcha , Hipertensão , Espectroscopia de Luz Próxima ao Infravermelho , Caminhada , Humanos , Idoso , Masculino , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Feminino , Hipertensão/fisiopatologia , Marcha/fisiologia , Caminhada/fisiologia , Córtex Cerebral/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Memória de Curto Prazo/fisiologia , Pessoa de Meia-Idade , Cognição/fisiologia , Função Executiva/fisiologia , Desempenho Psicomotor/fisiologia
6.
Clin Rehabil ; 38(9): 1200-1213, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38863234

RESUMO

OBJECTIVE: This study aimed to assess the efficacy of radial extracorporeal shock wave therapy in treating upper limb spasticity after a stroke. DESIGN: Randomized controlled trial. SETTING: Zhujiang Hospital of Southern Medical University. SUBJECTS: This study included 95 people with stroke. INTERVENTION: The active (n = 47) and sham-placebo (n = 48) radial extracorporeal shockwave therapy groups received three treatment sessions (every third day). MAIN MEASURES: The Modified Ashworth Scale, Hmax/Mmax ratio, root mean square, co-contraction ratio, mechanical parameters of the muscle and temperature were measured at baseline and days 2, 5 and 8. RESULTS: Among the 135 potential participants screened, 100 were enrolled and allocated randomly, with 95 participants ultimately being included in the intent-to-treat analysis dataset. The active group showed significantly better improvements in upper limb spasticity and muscle function than did the sham-placebo group. Greater improvements in the Modified Ashworth Scale were observed in the active group than in the sham-placebo group (difference, -0.45; 95% CI, -0.69 to -0.22; P < 0.001). Moreover, significant differences in root mean square, co-contraction ratio and Hmax/Mmax ratio were observed between the two groups (all P < 0.001). The mechanical parameters of the biceps muscle were significantly better in the active group than in the sham-placebo group (P < 0.001). The active group had a higher temperature than the sham-placebo group, although the difference was not significant (P = 0.070). CONCLUSIONS: This study revealed that the treatment with extracorporeal shockwave therapy can relieve upper limb spasticity in people with stroke.


Assuntos
Tratamento por Ondas de Choque Extracorpóreas , Espasticidade Muscular , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Extremidade Superior , Humanos , Espasticidade Muscular/etiologia , Espasticidade Muscular/reabilitação , Espasticidade Muscular/terapia , Masculino , Feminino , Tratamento por Ondas de Choque Extracorpóreas/métodos , Pessoa de Meia-Idade , Extremidade Superior/fisiopatologia , Acidente Vascular Cerebral/complicações , Reabilitação do Acidente Vascular Cerebral/métodos , Resultado do Tratamento , Idoso , Adulto
7.
Front Bioeng Biotechnol ; 12: 1377767, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817923

RESUMO

Low back pain (LBP) is one of the most prevalent and disabling disease worldwide. However, the specific biomechanical changes due to LBP are still controversial. The purpose of this study was to estimate the lumbar and lower limb kinematics, lumbar moments and loads, muscle forces and activation during walking in healthy adults and LBP. A total of 18 healthy controls and 19 patients with chronic LBP were tested for walking at a comfortable speed. The kinematic and dynamic data of the subjects were collected by 3D motion capture system and force plates respectively, and then the motion simulation was performed by OpenSim. The OpenSim musculoskeletal model was used to calculate lumbar, hip, knee and ankle joint angle variations, lumbar moments and loads, muscle forces and activation of eight major lumbar muscles. In our results, significant lower lumbar axial rotation angle, lumbar flexion/extension and axial rotation moments, as well as the muscle forces of the four muscles and muscle activation of two muscles were found in patients with LBP than those of the healthy controls (p < 0.05). This study may help providing theoretical support for the evaluation and rehabilitation treatment intervention of patients with LBP.

8.
BMC Geriatr ; 24(1): 437, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760712

RESUMO

OBJECTIVES: Motoric cognitive risk syndrome (MCR) is a pre-dementia condition characterized by subjective complaints in cognition and slow gait. Pain interference has previously been linked with cognitive deterioration; however, its specific relationship with MCR remains unclear. We aimed to examine how pain interference is associated with concurrent and incident MCR. METHODS: This study included older adults aged ≥ 65 years without dementia from the Health and Retirement Study. We combined participants with MCR information in 2006 and 2008 as baseline, and the participants were followed up 4 and 8 years later. The states of pain interference were divided into 3 categories: interfering pain, non-interfering pain, and no pain. Logistic regression analysis was done at baseline to examine the associations between pain interference and concurrent MCR. During the 8-year follow-up, Cox regression analysis was done to investigate the associations between pain interference and incident MCR. RESULTS: The study included 7120 older adults (74.6 ± 6.7 years; 56.8% females) at baseline. The baseline prevalence of MCR was 5.7%. Individuals with interfering pain had a significantly increased risk of MCR (OR = 1.51, 95% CI = 1.17-1.95; p = 0.001). The longitudinal analysis included 4605 participants, and there were 284 (6.2%) MCR cases on follow-up. Participants with interfering pain at baseline had a higher risk for MCR at 8 years of follow-up (HR = 2.02, 95% CI = 1.52-2.69; p < 0.001). CONCLUSIONS: Older adults with interfering pain had a higher risk for MCR versus those with non-interfering pain or without pain. Timely and adequate management of interfering pain may contribute to the prevention and treatment of MCR and its associated adverse outcomes.


Assuntos
Dor , Humanos , Feminino , Masculino , Idoso , Estudos de Coortes , Idoso de 80 Anos ou mais , Dor/epidemiologia , Dor/diagnóstico , Dor/psicologia , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/psicologia , Disfunção Cognitiva/diagnóstico , Fatores de Risco , Síndrome , Seguimentos , Estudos Longitudinais , Vigilância da População/métodos
9.
Front Neurosci ; 18: 1369996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694896

RESUMO

Background: Previous evidence suggests a link between gut microbiota and chronic pain, but the causal relationship is not yet fully understood. Methods: We categorized gut microbiota based on phylum, class, order, family, and genus levels and gathered pain-related information from the UKB and FinnGen GWAS project. Then, we conducted MR analysis to explore the potential causal relationship between gut microbiota and chronic pain at 12 specific locations. Results: We have discovered a direct connection between genetic susceptibility in the gut microbiota (gut metabolites) and pain experienced at 12 specific locations. Notably, Serotonin (5-HT) and Glycine were found to be associated with a higher risk of pain in the extremities. On the other hand, certain microbial families and orders were found to have a protective effect against migraines. Specifically, the family Bifidobacteriaceae (IVW, FDR p = 0.013) was associated with a lower risk of migraines. Furthermore, the genus Oxalobacter (IVW, FDR p = 0.044) was found to be linked to an increased risk of low back pain. Importantly, these associations remained significant even after applying the Benjamini-Hochberg correction test. Our analysis did not find any heterogeneity in the data (p > 0.05), as confirmed by the Cochrane's Q-test. Additionally, both the MR-Egger and MR-PRESSO tests indicated no significant evidence of horizontal pleiotropy (p > 0.05). Conclusion: Our MR analysis demonstrated a causal relationship between the gut microbiota and pain, highlighting its potential significance in advancing our understanding of the underlying mechanisms and clinical implications of microbiota-mediated pain.

10.
J Neuroeng Rehabil ; 21(1): 45, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570841

RESUMO

BACKGROUND: Knee osteoarthritis (KOA) is an irreversible degenerative disease that characterized by pain and abnormal gait. Radiography is typically used to detect KOA but has limitations. This study aimed to identify changes in plantar pressure that are associated with radiological knee osteoarthritis (ROA) and to validate them using machine learning algorithms. METHODS: This study included 92 participants with variable degrees of KOA. A modified Kellgren-Lawrence scale was used to classify participants into non-ROA and ROA groups. The total feature set included 210 dynamic plantar pressure features captured by a wearable in-shoe system as well as age, gender, height, weight, and body mass index. Filter and wrapper methods identified the optimal features, which were used to train five types of machine learning classification models for further validation: k-nearest neighbors (KNN), support vector machine (SVM), random forest (RF), AdaBoost, and eXtreme gradient boosting (XGBoost). RESULTS: Age, the standard deviation (SD) of the peak plantar pressure under the left lateral heel (f_L8PPP_std), the SD of the right second peak pressure (f_Rpeak2_std), and the SD of the variation in the anteroposterior displacement of center of pressure (COP) in the right foot (f_RYcopstd_std) were most associated with ROA. The RF model with an accuracy of 82.61% and F1 score of 0.8000 had the best generalization ability. CONCLUSION: Changes in dynamic plantar pressure are promising mechanical biomarkers that distinguish between non-ROA and ROA. Combining a wearable in-shoe system with machine learning enables dynamic monitoring of KOA, which could help guide treatment plans.


Assuntos
Osteoartrite do Joelho , Dispositivos Eletrônicos Vestíveis , Humanos , Osteoartrite do Joelho/diagnóstico por imagem , Radiografia , Marcha , Aprendizado de Máquina
11.
Neuropsychol Rehabil ; : 1-25, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666380

RESUMO

ABSTRACTTo assess the impact of ankle-foot orthoses (AFOs) on mobility and gait during dual-task walking in post-stroke survivors. In this cross-sectional, factorial design trial, stroke survivors performed four randomized tasks: (1) dual-task walking with AFOs, (2) single-task walking with AFOs, (3) dual-task walking without AFOs, and (4) single-task walking without AFOs. Primary outcome was the Timed Up and Go (TUG) test, with secondary outcomes including gait metrics, Tinetti scores, and auditory N-back tests. In the results, 48 subjects (38 males and 10 females; 19-65 years) completed the trial. Patients had a greater TUG score with AFOs compared with non-AFOs conditions (95% CI: 7.22-14.41, P < 0.001) in single-task and dual-task conditions. Secondary outcomes showed marked enhancement with AFOs during dual-task walking, with significant interaction effects in gait metrics, balance, and cognitive function (P < 0.05). Although not statistically significant, dual-task effects of TUG and walking speed were more pronounced during dual-task walking. In conclusion, AFOs enhance mobility and gait during both single and dual-task walking in post-stroke survivors.

12.
Exp Neurol ; 376: 114726, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403042

RESUMO

BACKGROUND: The complex pathophysiological changes following cerebral ischemia-reperfusion injury (CIRI) include the accumulation of defective proteins and damaged organelles, which cause massive neuron demise. To preserve cellular homeostasis, the autophagy-lysosomal pathway (ALP) is crucial for neurons to dispose of these substances. Many studies have shown that bone mesenchymal stem cell exosomes (BMSC-Exos) can reduce CIRI. However, the specific mechanisms have not been well elucidated, a fact that limits its widespread clinical use. This study aimed to clarify whether BMSC-Exos could attenuate ALP dysfunction by restoring lysosomal function after CIRI via inhibiting mTOR and then activating TFEB nucleus translocation. METHODS: In this study, Flow cytometry, Nanoparticle tracking analysis (NTA), Transmission electron microscope (TEM), and Western blot were used to identify the BMSCs and BMSC-Exos used in this experiment as conforming to the requirements. In vivo experiments, SD rats were modeled with temporary middle cerebral artery occlusion (tMCAO), and BMSC-Exos was injected into the tail vein 2 h after modeling. Triphenyl tetrazolium chloride (TTC) staining, modified neurological severity scores (mNSS), corner turn test, and rotating rod test were used to detect neurological deficits in rats after BMSC-Exos intervention. Western blot and Immunofluorescence were used to detect ALP, transcription factor EB(TFEB) nucleus translocation, and mammalian target of rapamycin (mTOR) change at different time points after modeling and after BMSC-Exos intervention. In vitro experiments, pheochromocytoma cells (PC12) cells were subjected to oxygen-glucose deprivation and reperfusion (OGD/R) modeling to mimic CIRI, and were respectively intervened with BMSC-Exos, BMSC-Exos + MHY 1485 (the mTOR agonist), Rapamycin (the mTOR inhibitor). CCK8, Western blot, and Immunofluorescence were used to detect PC12 cell survival, TFEB nucleus translocation, and cathepsin B(CTSB) Immunofluorescence intensity. RESULTS: We found that ALP dysfunction occurred 72 h after tMCAO, and BMSC-Exos can attenuate ALP dysfunction by restoring lysosomal function. Next, we examined TFEB nucleus translocation and the expression of mTOR, a key regulator of translocation. We found that BMSC-Exos could inhibit mTOR and activate TFEB nucleus translocation. Additional in vitro tests revealed that BMSC-Exos could increase PC12 cell survival after OGD/R, activating TFEB nucleus translocation and enhancing the fluorescence intensity of CTSB, which in turn could be reversed by the mTOR agonist, MHY1485. This effect was similar to another mTOR inhibitor, Rapamycin. CONCLUSION: BMSC-Exos could attenuate ALP dysfunction by restoring lysosomal function after CIRI by inhibiting mTOR and then promoting TFEB nucleus translocation.


Assuntos
Autofagia , Exossomos , Lisossomos , Traumatismo por Reperfusão , Animais , Masculino , Ratos , Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Isquemia Encefálica/metabolismo , Exossomos/metabolismo , Exossomos/transplante , Lisossomos/metabolismo , Lisossomos/patologia , Células-Tronco Mesenquimais/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo
13.
Int J Stroke ; 19(1): 50-57, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37542426

RESUMO

BACKGROUND: Frailty appears to be associated with unfavorable prognosis after stroke in observational studies, but the causality remains largely unknown. AIMS: The aim of this study is to investigate the potential causal effect of frailty on functional outcome at 3 months after ischemic stroke using the Mendelian randomization (MR) framework. METHODS: Genetic instruments for frailty index were identified in a genome-wide association study meta-analysis including 175,226 individuals of European descent. Corresponding genetic association estimates for functional outcome after ischemic stroke at 90 days were taken from the Genetic of Ischemic Stroke Functional Outcome (GISCOME) network of 6021 patients. We performed inverse-variance weighted MR as the main analyses, followed by several alternate methods and sensitivity analyses. RESULTS: In univariable MR, we found evidence that genetically predicted higher frailty index (odds ratio (OR) = 5.12; 95% confidence interval (CI) = 1.31-20.09; p = 0.019) was associated with worse functional outcome (modified Rankin Scale score ⩾3) after ischemic stroke. In further multivariable MR adjusting for potential confounding traits including body mass index, C-reactive protein, inflammatory bowel disease, and smoking initiation, the overall patterns between genetic liability to frailty and poor functional outcome status remained. Sensitivity analyses with complementary methods and with model unadjusted for baseline stroke severity (OR = 4.19; 95% CI = 1.26-13.90; p = 0.019) yielded broadly concordant results. CONCLUSIONS: The present MR study suggested a possible causal effect of frailty on poor functional outcome after ischemic stroke. Frailty might represent a potential target for intervention to improve recovery after ischemic stroke.


Assuntos
Fragilidade , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/complicações , AVC Isquêmico/complicações , Estudo de Associação Genômica Ampla , Fragilidade/genética , Fragilidade/complicações , Fenótipo , Polimorfismo de Nucleotídeo Único
14.
J Integr Neurosci ; 22(5): 128, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37735120

RESUMO

BACKGROUND: Ischemic stroke, the most common stroke type, has threatened human life and health. Currently, intravenous thrombolysis and endovascular thrombectomy are the mainstream treatment methods, but they may cause cerebral ischemia-reperfusion injury (CIRI), which aggravates brain injury. Consequently, it is worthwhile to start with a study of CIRI mechanism to identify better prevention and treatment methods. Applying single-cell RNA sequencing (scRNA-seq) technology to further understand the biological functions of various cell types in CIRI will facilitate the intervention of CIRI. METHODS: This study aimed to establish a rat middle cerebral artery occlusion (MCAO) model to simulate cerebral ischemia-reperfusion, perform enzymatic hydrolysis, and suspend cerebral cortex tissue edema. Single-cell transcriptome sequencing was used, combined with cluster analysis, t-distributed stochastic neighbor embedding (t-SNE) visualization, and other bioinformatics methods to distinguish cell subgroups while using gene ontology (GO) function enrichment and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment to reveal the biological function of each cell subgroup. RESULTS: We identified 21 brain clusters with cell type-specific gene expression patterns and cell subpopulations, as well as 42 marker genes representing different cell subpopulations. The number of cells in clusters 0-3 increased significantly in MCAO group compared to that in the sham group, and nine-cell subpopulations exhibited remarkable differences in the number of genes. Subsequently, GO and KEGG analyses were performed on the top 40 differentially expressed genes (DEGs) in the six cell subpopulations with significant differences. These results indicate that biological processes and signaling pathways are involved in different cell subpopulations. CONCLUSIONS: ScRNA-seq revealed the diversity of cell differentiation and the unique information of cell subpopulations in the cortex of rats with acute ischemic stroke, providing novel insight into the pathological process and drug discovery in stroke.


Assuntos
Edema Encefálico , AVC Isquêmico , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Humanos , Animais , Ratos , Análise da Expressão Gênica de Célula Única , Córtex Cerebral , Infarto da Artéria Cerebral Média
15.
Front Bioeng Biotechnol ; 11: 1246014, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37609119

RESUMO

Introduction: Gait, as a fundamental human movement, necessitates the coordination of muscles across swing and stance phases. Functional electrical stimulation (FES) of the tibialis anterior (TA) has been widely applied to foot drop correction for patients with post-stroke during the swing phase. Although the gastrocnemius (GAS) during the stance phase is also affected, the Functional electrical stimulation of the gastrocnemius received less attention. Methods: To address this limitation, a timing- and intensity-adaptive Functional electrical stimulation control strategy was developed for both the TA and GAS. Each channel incorporates a speed-adaptive (SA) module to control stimulation timing and an iterative learning control (ILC) module to regulate the stimulation intensity. These modules rely on real-time kinematic or kinetic data during the swing or stance phase, respectively. The orthotic effects of the system were evaluated on eight patients with post-stroke foot drop. Gait kinematics and kinetics were assessed under three conditions: no stimulation (NS), Functional electrical stimulation to the ankle dorsiflexor tibialis anterior (SA-ILC DS) and FES to the tibialis anterior and the ankle plantarflexor gastrocnemius (SA-ILC DPS). Results: The ankle plantarflexion angle, the knee flexion angle, and the anterior ground reaction force (AGRF) in the SA-ILC DPS condition were significantly larger than those in the NS and SA-ILC DS conditions (p < 0.05). The maximum dorsiflexion angle during the swing phase in the SA-ILC DPS condition was similar to that in the SA-ILC DS condition, with both being significantly larger than the angle observed in the NS condition (p < 0.05). Furthermore, the angle error and force error relative to the set targets were minimized in the SA-ILC DPS condition. Discussion: The observed improvements can be ascribed to the appropriate stimulation timing and intensity provided by the SA-ILC DPS strategy. This study demonstrates that the hybrid and adaptive control strategy of functional electrical stimulation system offers a significant orthotic effect, and has considerable potential for future clinical application.

16.
Brain Sci ; 13(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37508950

RESUMO

Pre-frailty is a transitional stage between health and frailty. Previous studies have demonstrated that individuals with pre-frailty experience declines in cognitive and gait performances compared with healthy individuals. However, the basic neural mechanism underlying this needs to be clarified. In this cross-sectional study, twenty-one healthy older adults and fifteen with pre-frailty underwent three conditions, including a single cognitive task (SC), single walking task (SW), and dual-task (DT), while cortical hemodynamic reactions were measured using functional near-infrared spectroscopy (fNIRS). The prefrail group (PG) showed a significantly lower activation of the left dorsolateral prefrontal cortex (L-DLPFC) than the healthy group (HG) when performing SC (p < 0.05). The PG showed a significantly lower Timed Up and Go test and step speed than the HG during SW (p < 0.05). The coefficient of variation (CV) of the step length of the PG was significantly higher than that of the HG when performing DT (p < 0.05). No significant correlation in cerebral cortex activation and gait parameters in the HG when performing SW and DT was noted (p > 0.05). Participants of the PG with a higher oxygenated area in the left anterior prefrontal cortex (L-APFC) had a lower step frequency during SW (r = -0.533, p = 0.041), and so did the following indicators of the PG during DT: L-APFC and step speed (r = -0.557, p = 0.031); right anterior prefrontal cortex and step speed (r = -0.610, p = 0.016); left motor cortex and step speed (r = -0.674, p = 0.006); step frequency (r = -0.656, p = 0.008); and step length (r = -0.535, p = 0.040). The negative correlations between the cerebral cortex and gait parameters of the PG indicated a neural compensatory effect of pre-frailty. Therefore, older adults with pre-frailty promote prefrontal activation to compensate for the impaired sensorimotor systems.

17.
Small ; 19(37): e2303304, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37150841

RESUMO

Fingerprints possess wide applications in personal identification, tactile perception, access control, and anti-counterfeiting. However, latent fingerprints are usually left on touched surfaces, leading to the leakage of personal information. Furthermore, tactile perception greatly decreases when fingerprints are covered by gloves. Customized fingerprints are developed to solve these issues, but it is a challenge to develop fingerprints with various customized patterns using traditional techniques due to their requiring special templates, materials, or instruments. Inspired by ripples on the lake, blowing air is used to generate surface waves on a colloidal polyelectrolyte complex, leading to vertical stratification and the accumulation of particles near the top of the film layer. As water rapidly evaporates, the viscosity of these particles significantly increases and the wave is solidified, forming fingerprint patterns. These customized fingerprints integrate functions of grasping objects, personal identification without leaving latent fingerprints and tactile perception enhancement, which can be applied in information security, anti-counterfeiting, tactile sensors, and biological engineering.

18.
Front Pharmacol ; 14: 1111815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937837

RESUMO

Background: Stroke is one of the leading causes of mortality and permanent disability worldwide. However, the current stroke treatment has a limited effect. Therefore, a new treatment is urgently needed. Stem cell therapy is a cutting-edge treatment for stroke patients. This study aimed to gain better understanding of global stem cell trends in stroke via a bibliometric analysis. Methods: We used the Web of Science Core Collection to search pertinent articles about stem cells in stroke published between 2004 and 2022. Analysis was conducted using CiteSpace, VOSviewer, and the R package "bibliometrix" to identify publication outputs, countries/regions, institutions, authors/co-cited authors, journals/co-cited journals, co-cited references, and keywords. Results: A total of 6,703 publications were included in the bibliometric analysis. The total number of citations significantly and rapidly increased between 2004 and 2022, with the most pronounced growth pattern observed in the period of 2008-2009. In terms of authoritarian countries, the USA had the most publications among the countries. As for institutions and authors, the most prolific institution was the University of South Florida, followed by Oakland University and then Shanghai Jiao Tong University, and Chopp, M. and Borlongan, Cesario V, had the most output among the authors. Regarding the journals, Cell Transplantation had the highest publication, followed by Brain Research. As for references, "Mesenchymal stem cells as trophic mediators" was the most frequently cited (2,082), and the article entitled Neuronal replacement from endogenous precursors in the adult brain after stroke had the strongest burstiness (strength = 81.35). Emerging hot words in the past decade included "adhesion molecule," "mesenchymal stromal cell," "extracellular vesicle," "pluripotent stem cells," "signaling pathway," "plasticity," and "exosomes." Conclusion: Between 2004 and 2022, the terms "neurogenesis," "angiogenesis," "mesenchymal stem cells," "extracellular vesicle," "exosomes," "inflammation," and "oxidative stress" have emerged as the hot research areas for research on stem cells in stroke. Although stem cells exert a number of positive effects, the main mechanisms for mitigating the damage caused by stroke are still unknown. Clinical challenges may include complicating factors that can affect the efficacy of stem cell therapy, which are worth a deep exploration.

19.
Arthritis Care Res (Hoboken) ; 75(6): 1333-1339, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36651172

RESUMO

OBJECTIVE: To investigate whether risk factors related to pain vary at different stages of knee osteoarthritis (OA). METHODS: Individuals from the Osteoarthritis Initiative with available Kellgren/Lawrence (K/L) grade and numerical rating scale (NRS) data at baseline were included in this study. Pain severity was classified into 3 categories based on NRS scores: no pain, mild pain, and moderate/severe pain. Knee OA severity was stratified into 4 categories according to the K/L system. Pain risk factors were evaluated using generalized ordinal logistic regression analysis, and a heatmap was created to compare differences in standardized regression coefficients between subgroups of patients with different knee OA severities. RESULTS: A total of 4,446 subjects were included in this study: 1,574 individuals without pain (35.4%), 1,138 individuals with mild pain (25.6%), and 1,734 individuals with moderate/severe pain (39.0%). For the entire population and subjects in the premorbid-stage subgroup, knee injury history, diabetes mellitus, depression, use of nonsteroidal anti-inflammatory drugs (NSAIDs), and valgus malaligned knees were associated with more severe pain. Older age and stronger quadriceps muscles were associated with milder pain. As the disease progressed, the number of significant risk factors decreased. Only age and quadriceps muscle force remained significant in end-stage disease. CONCLUSION: Multiple factors are associated with pain in patients with knee OA. As the disease progresses, the number of significant risk factors gradually reduces. These findings suggest that strategies for managing pain related to knee OA should vary depending on radiographic grades.


Assuntos
Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/epidemiologia , Osteoartrite do Joelho/etiologia , Fatores de Risco , Dor/complicações , Articulação do Joelho/diagnóstico por imagem
20.
ACS Appl Mater Interfaces ; 15(5): 6486-6498, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36716400

RESUMO

Long-term neuroinflammation is a major barrier to neurological recovery after cerebral ischemia-reperfusion injury (CIRI). Here, a thermosensitive injectable supramolecular hybrid hydrogel is developed to sustainably deliver exosomes derived from interleukin-1ß-stimulated bone marrow stromal cells (BMSCs) (ßExos) with improved exosome production and anti-inflammatory capacity for neuroinflammation inhibition and neurological recovery. The supramolecular hydrogel displays self-healing and injectable features, along with high biocompatibility and tissue-like softness. The ßExos effectively reduce the lipopolysaccharide-induced inflammatory responses in the immortalized mouse microglia (BV2) cell line, and the in situ formed hydrogel improves the exosome retention in the ischemic core area. More remarkably, in the middle cerebral artery occlusion in vivo model, glial scar formation and neuronal loss are significantly reduced by regulating neuroinflammation using the released ßExos. Therefore, the combination of interleukin-1ß-stimulated exosomes with injectable supramolecular hydrogel provides an appealing strategy for treating central nervous system diseases.


Assuntos
Exossomos , Hidrogéis , Camundongos , Animais , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Doenças Neuroinflamatórias , Exossomos/metabolismo , Interleucina-1beta/metabolismo , Microglia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA