RESUMO
PURPOSE: Proton stereotactic radiosurgery (PSRS) has emerged as an innovative proton therapy modality aimed at achieving precise dose delivery with minimal impact on healthy tissues. This study explores the dosimetric outcomes of PSRS in comparison to traditional intensity-modulated proton therapy (IMPT) by focusing on cases with small target volumes. A custom-made aperture system designed for proton therapy, specifically tailored to small target volumes, was developed and implemented for this investigation. METHODS: A prerequisite mechanical validation through an isocentricity test precedes dosimetric assessments, ensuring the seamless integration of mechanical and dosimetry analyses. Five patients were enrolled in the study, including two with choroid melanoma and three with arteriovenous malformations (AVM). Two treatment plans were meticulously executed for each patient, one utilizing a collimated aperture and the other without. Both plans were subjected to robust optimization, maintaining identical beam arrangements and consistent optimization parameters to account for setup errors of 2 mm and range uncertainties of 3.5%. Plan evaluation metrics encompassing the Heterogeneity Index (HI), Paddick Conformity Index (CIPaddick), Gradient Index (GI), and the R50% index to evaluate alterations in low-dose volume distribution. RESULTS: The comparative analysis between PSRS and traditional PBS treatment revealed no significant differences in plan outcomes, with both modalities demonstrating comparable target coverage. However, collimated apertures resulted in discernible improvements in dose conformity, dose fall-off, and reduced low-dose volume. CONCLUSIONS: This study underscores the advantageous impact of the aperture system on proton therapy, particularly in cases involving small target volumes.
Assuntos
Órgãos em Risco , Terapia com Prótons , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Radiocirurgia/métodos , Terapia com Prótons/métodos , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco/efeitos da radiação , Melanoma/radioterapia , Melanoma/cirurgiaRESUMO
PURPOSE: Our purpose was to report the clinical and dosimetric attributes of patients with large unresectable hepatocellular carcinoma (HCC) undergoing proton or photon radiation therapy. METHODS AND MATERIALS: We retrospectively analyzed the outcomes and dosimetric indices of 159 patients with >5 cm nonmetastatic HCC who underwent definitive radiation therapy using either protons (N = 105) or photons (N = 54) between 2014 and 2018. Additional photon plans were performed in the 105 proton-treated patients using the same dose prescription criteria for intragroup dosimetric comparison. RESULTS: After a median follow-up of 47 months, patients with biologically effective dose (BED10) ≥ 75 Gy exhibited significantly better local control (LC; 2-year: 85.6% vs 20.5%; P < .001), progression-free survival (PFS; median, 7.4 vs 3.2 months; P < .001), and overall survival (OS; median, 18.1 vs 7.3 months; P < .001) compared with those with BED10 < 75 Gy. Notably, proton-treated patients had a significantly higher BED10 (96 vs 67 Gy; P < .001) and improved LC (2-year: 88.5% vs 33.8%; P < .001), PFS (median, 7.4 vs 3.3 months; P = .001), and OS (median, 18.9 vs 8.3 months; P < .001) than those undergoing photon radiation therapy. Furthermore, patients treated with protons had significantly lower V1 of the liver (P < .001), mean upper gastrointestinal tract dose (P < .001), and mean splenic dose (P < .001), with significantly decreased incidences of radiation-induced liver disease (P = .007), grade ≥3 upper gastrointestinal bleeding (P = .001), and grade ≥3 lymphopenia (P = .003). On multivariate analysis, proton radiation therapy consistently correlated with superior LC (P < .001), PFS (P < .001), and OS (P < .001). In intragroup dosimetric comparison, photon plans demonstrated significantly higher mean liver dose (P < .001) compared with actually delivered proton treatments, and 72 (69%) of them had mean liver dose exceeding 28 Gy, which necessitated target dose de-escalation. CONCLUSIONS: In the context of large HCC radiation therapy, a higher target BED10 was associated with improved outcomes. Notably, proton therapy has demonstrated the capability to deliver ablative doses while also being accompanied by fewer instances of severe toxicity.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Terapia com Prótons , Lesões por Radiação , Humanos , Carcinoma Hepatocelular/patologia , Prótons , Estudos Retrospectivos , Neoplasias Hepáticas/patologia , Lesões por Radiação/etiologia , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Dosagem RadioterapêuticaRESUMO
Radiotherapy is an important modality for the treatment of cancer, e.g., X-ray, Cs-137 γ-ray (peak energy: 662 keV). An important therapy pathway of radiation is to generate the double strand breaks of DNA to prohibit the proliferation of cancer cells. In addition, the excessive amount of reactive oxygen species (ROS) is induced to damage the organelles, which can cause cellular apoptosis or necrosis. Gold nanoparticles (GNPs) have been proven potential as a radiosensitizer due to the high biocompatibility, the low cytotoxicity and the high-Z property (Z = 79) of gold. The latter property may allow GNPs to induce more secondary electrons for generating ROS in cells as irradiated by high-energy photons. In this paper, the radiobiological effects on A431 cells with uptake of 55-nm GNPs were studied to investigate the GNPs-enhanced production of ROS on these cells as irradiated by Cs-137 γ-ray. The fluorescence-labeling image of laser scanning confocal microscopy (LSCM) shows the excessive expression of ROS in these GNPs-uptake cells after irradiation. And then, the follow-up disruption of cytoskeletons and dysfunction of mitochondria caused by the induced ROS are observed. From the curves of cell survival fraction versus the radiation dose, the radiosensitization enhancement factor of GNPs is 1.29 at a survival fraction of 30%. This demonstrates that the tumoricidal efficacy of Cs-137 radiation can be significantly raised by GNPs. Because of facilitating the production of excessive ROS to damage tumor cells, GNPs are proven to be a prospective radiosensitizer for radiotherapy, particularly for the treatment of certain radioresistant tumor cells. Through this pathway, the tumoricidal efficacy of radiotherapy can be raised.
RESUMO
BACKGROUND: Glioblastoma multiforme (GBM) is the most lethal primary brain tumors which remains difficult to cure despite advances in surgery, radiotherapy and chemotherapy. Therefore, the development of new drug is urgently needed. α-carboline derivatives were usually isolated from marine animals such as Britannia marine tunicate Dendrodoa grossularia and Indonesian ascidian Polycarpa aurata. In this study, we have synthesized several α-carboline compounds and examined their anti-glioma activities. RESULTS: We report that among α-carboline derivatives TJY-16 (6-acetyl-9-(3,4,5-trimethoxybenzyl)-9H-pyrido[2,3-b] indole) is the most potent α-carboline analog to induce glioma cell death with IC50 value of around 50 nM. TJY-16 decreased cell viability of glioma cells in a concentration- and time-dependent manner. Trypan blue exclusion assay showed that the reduction of cell viability was due to both cell growth inhibition and cell death. Flow cytometric analysis showed that TJY-16 induced G2/M cell cycle arrest followed by induction of sub-G1 phase. Hoechst staining detected the apoptotic features such as nuclear shrinkage and DNA condensation. Western blot analysis showed the increased level of cleaved caspase-3. The activation of caspase-8 and depolarization of mitochondrial membrane potential (ΔΨm) indicated that both extrinsic and intrinsic apoptotic pathways were involved in TJY-16-induced apoptosis. TJY-16 effectively inhibited tumor growth and induced caspase-3 activation in the xenograft tumor model of U87 glioma cells. CONCLUSIONS: Our results suggest that TJY-16 may kill glioma cells by inducing G2/M cell cycle arrest followed by apoptosis. Thus, TJY-16 is a promising agent for the treatment of malignant gliomas.