Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Phys Chem Lett ; : 10937-10943, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39448065

RESUMO

For cathode materials of sodium-ion batteries, O3-type Ni/Fe/Mn-based (Na-NFM) layered oxides have garnered extensive attention because of high economic viability, environmental friendliness, and the potential for high energy density. Among them, Fe-rich compositions exhibit higher initial charge capacity and lower bill-of-material costs, while they fade rapidly and exhibit low initial coulombic efficiency, hindering their commercialization prospects. In this work, we investigate the failure of Fe-rich Na-NFM materials through X-ray absorption spectroscopy methods. The results reveal a combined failure mechanism that encompasses not only the conventional theory of Fe migration but also an abnormal Ni-redox deterioration, which has not yet been reported. More factors related to the failure of Fe-rich Na-NFM layered oxides are discussed in detail. These findings are expected to inspire targeted research efforts toward Fe-rich Na-NFM materials, thereby accelerating the practical application of sodium-ion batteries.

2.
Inorg Chem ; 63(37): 17166-17175, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39221868

RESUMO

Recycling spent lithium-ion batteries (LIBs) in a green and economical way is vital for maintaining the sustainability of the LIB industry. However, given the low content of high-value components in olivine-type lithium iron phosphate (LFP), traditional metallurgical processes are economically unfeasible for recycling due to high chemical/energy consumption and labor-intensive procedures. This study proposes a facile electrochemistry strategy to directly regenerate the spent LFP material by an electrically driven lithiation process as a spent LFP slurry (200 g/L) rather than as electrodes. Minimal energy and chemical consumption are achieved by enabling the healing of spent LFP without destroying the original olivine-type crystal structure. The proposed method utilizes mild healing conditions (25 °C for 2 h) and LiCl solution as the only reagent in the regeneration process, significantly lowering the expenses associated with producing cathode electrodes. The electrochemical performance of the regenerated LFP have been dramatically recovered after regeneration, exhibiting a capacity of 151.5 mA h g-1 at 0.1 C and 96.6% capacity retention over 400 cycles at 1 C. This approach demonstrates a high processing capability and offers considerable economic and environmental benefits, making it an eco-friendly option and supporting the sustainable development of the LFP industry.

3.
ACS Nano ; 18(34): 23773-23784, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39141003

RESUMO

Al impurity is among the most likely components to enter the spent lithium-ion battery (LIB) cathode powder due to the strong adhesion between the cathode material and the Al current collector. However, high-value metal elements tend to be lost during the deep removal of Al impurities to obtain high-purity metal salt products in the conventional hydrometallurgical process. In this work, the harmful Al impurity is designed as a beneficial ingredient to upcycle high-voltage LiCoO2 by incorporating robust Al-O covalent bonds into the bulk of the cathode assisted with Ti modification. Benefiting from the strong Al-O and Ti-O bonds in the bulk, the irreversible phase transitions of the upcycled R-LCO-AT have been significantly suppressed at high voltages, as revealed by in situ XRD. Moreover, a Li+-conductive Li2TiO3 protective layer is constructed on the surface of R-LCO-AT by pinning slow-diffusion Ti on the grain boundaries, resulting in improved Li+ diffusion kinetics and restrained interface side reactions. Consequently, the cycle stability and rate performance of R-LCO-AT were significantly enhanced at a high cutoff voltage of 4.6 V, with a discharge capacity of 189.5 mAhg-1 at 1 C and capacity retention of 92.9% over 100 cycles at 4.6 V. This study utilizes the detrimental impurity element to upcycle high-voltage LCO cathodes through an elaborate bulk/surface structural design, offering a strategy for the high-value utilization of spent LIBs.

4.
J Phys Chem Lett ; 15(34): 8628-8635, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39150409

RESUMO

Polycrystalline lithium manganese oxide (LMO) is known to suffer from severe surface structure degradation and electrochemical polarization due to its mixed crystal plane orientations. A hexagonal prism single-crystal LMO (LMOS-HP), engineered through the SrO-induced preferential growth effect, features the most stable {111} top surfaces and the fastest Li+ diffusion {110} side surfaces, effectively addressing these challenges. Consequently, LMOS-HP exhibits superior electrochemical capability, with only 0.021% capacity fading per cycle after 500 cycles and achieves a discharge capacity of 81.9 mAh g-1 at 20C. This innovative design offers a promising approach for tuning surface crystal orientation to improve performance.

5.
Nano Lett ; 24(34): 10547-10553, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39140754

RESUMO

Two-dimensional transition metal carbides/nitrides (MXenes) have shown great promise in various applications. However, mass production of MXenes suffers from the excessive use of toxic fluorine-containing reagents. Herein, a new method was validated for synthesizing MXenes from five MAX ceramics. The method features a minimized (stoichiometric) dosage of F-containing reagent (NaBF4) and polyols (glycerol, erythritol, and xylitol) as the reaction solvent. Due to the sweetness of polyols and the low environmental impact, we refer to this method as a "sweet" synthesis of MXenes. An in-depth molecular dynamics simulation study, combined with experimental kinetic parameters, further revealed that the diffusion of F- in the confined interplanar space is rate-determining for the etching reaction. The expansion of interlayer spacing by polyols effectively reduces the diffusion activation energy of F- and accelerates the etching reaction.

6.
Angew Chem Int Ed Engl ; 63(40): e202410420, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38961660

RESUMO

The structural failure of Na2Mn[Fe(CN)6] could not be alleviated with traditional modification strategies through the adjustable composition property of Prussian blue analogues (PBAs), considering that the accumulation and release of stress derived from the MnN6 octahedrons are unilaterally restrained. Herein, a novel application of adjustable composition property, through constructing a coordination competition relationship between chelators and [Fe(CN)6]4- to directionally tune the enrichment of elements, is proposed to restrain structural degradation and induce unconventional energy coupling phenomenon. The non-uniform distribution of elements at the M1 site of PBAs (NFM-PB) is manipulated by the sequentially precipitated Ni, Fe, and Mn according to the Irving-William order. Electrochemically active Fe is operated to accompany Mn, and zero-strain Ni is modulated to enrich at the surface, synergistically mitigating with the enrichment and release of stress and then significantly improving the structural stability. Furthermore, unconventional energy coupling effect, a fusion of the electrochemical behavior between FeLS and MnHS, is triggered by the confined element distribution, leading to the enhanced electrochemical stability and anti-polarization ability. Consequently, the NFM-PB demonstrates superior rate performance and cycling stability. These findings further exploit potentialities of the adjustable composition property and provide new insights into the component design engineering for advanced PBAs.

7.
J Phys Chem Lett ; 15(26): 6743-6749, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38912658

RESUMO

Layered sodium transition-metal oxides generally encounter severe capacity decay and inferior rate performance during cycling, especially at a high state of charge. Herein, defect concentration is rationally modulated to explore the impact on electrochemical behavior in NaNi1/3Fe1/3Mn1/3O2 layered oxides. Bulk vacancies are increased through annealing in an oxygen-rich atmosphere, demonstrated by electron paramagnetic resonance measurement. It is found that the cathode with enriched oxygen vacancies exhibits significantly enhanced reversibility of redox reactions with a higher initial Coulombic efficiency of 90.0%. Furthermore, the reduced volume variations during the initial charge/discharge process are also confirmed by in situ X-ray diffraction. As a result, the oxygen-vacancy-rich cathode shows great cycling stability and superior rate performances. Also, full cells deliver a specific capacity of approximately 145.2 mAh g-1 at 0.5 C, with a high capacity retention of 78.3% after 100 cycles. This work presents a viable strategy for designing Na+ intercalated cathodes with a high-energy density.

8.
Poult Sci ; 103(8): 103869, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909510

RESUMO

Goose astrovirus (GoAstV) is an emerging avian pathogen that induces gout in goslings with a mortality of up to 50%. Organ damage caused by GoAstV infection was considered the cause of gout, but it is still unclear whether other factors are involved. Human and murine studies have linked the gut microbiome-derived urate and gout, thus we hypothesized that gut microbiome may also play an important role in gout induced by GoAstV infection. This study tested the pathogenicity of our isolated GoAstV genotype 2 strain on goslings, while the appearance of clinical signs, histopathological changes, viral distribution and the blood level of cytokines were monitored for 18 d postinfection (dpi). The dynamics in the gut microbiome were profiled by 16S sequencing and then correlated with GoAstV infection. Results showed that this study successfully developed an experimental infection model for studying the pathogenicity of the GoAstV infection which induces typical symptoms of gout. GoAstV infection significantly altered the gut microbiome of goslings with the enrichment of potential proinflammatory bacteria and depletion of beneficial bacteria that can produce short-chain fatty acids. More importantly, the microbial pathway involved in urate production was significantly increased in goslings infected with GoAstV, suggesting that gut microbiome-derived urate may also contribute to the gout symptoms. Overall, this study demonstrated the role of gut microbiome in the pathogenesis of GoAstV infection, highlighting the potential of gut microbiome-based therapeutics against gout symptoms.


Assuntos
Infecções por Astroviridae , Avastrovirus , Microbioma Gastrointestinal , Gansos , Doenças das Aves Domésticas , Animais , Infecções por Astroviridae/veterinária , Infecções por Astroviridae/virologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/microbiologia , Avastrovirus/fisiologia , Gota/veterinária , Gota/virologia , Gota/microbiologia
9.
ACS Nano ; 18(20): 13150-13163, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38726816

RESUMO

Layered sodium transition-metal (TM) oxides generally suffer from severe capacity decay and poor rate performance during cycling, especially at a high state of charge (SoC). Herein, an insight into failure mechanisms within high-voltage layered cathodes is unveiled, while a two-in-one tactic of charge localization and coherent structures is devised to improve structural integrity and Na+ transport kinetics, elucidated by density functional theory calculations. Elevated Jahn-Teller [Mn3+O6] concentration on the particle surface during sodiation, coupled with intense interlayer repulsion and adverse oxygen instability, leads to irreversible damage to the near-surface structure, as demonstrated by X-ray absorption spectroscopy and in situ characterization techniques. It is further validated that the structural skeleton is substantially strengthened through the electronic structure modulation surrounding oxygen. Furthermore, optimized Na+ diffusion is effectively attainable via regulating intergrown structures, successfully achieved by the Zn2+ inducer. Greatly, good redox reversibility with an initial Coulombic efficiency of 92.6%, impressive rate capability (86.5 mAh g-1 with 70.4% retention at 10C), and enhanced cycling stability (71.6% retention after 300 cycles at 5C) are exhibited in the P2/O3 biphasic cathode. It is believed that a profound comprehension of layered oxides will herald fresh perspectives to develop high-voltage cathode materials for sodium-ion batteries.

10.
BMC Genomics ; 25(1): 340, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575872

RESUMO

BACKGROUND: The popularity of Muscovy ducks is attributed not only to their conformation traits but also to their slightly higher content of breast and leg meat, as well as their stronger-tasting meat compared to that of typical domestic ducks. However, there is a lack of comprehensive systematic research on the development of breast muscle in Muscovy ducks. In addition, since the number of skeletal muscle myofibers is established during the embryonic period, this study conducted a full-length transcriptome sequencing and microRNA sequencing of the breast muscle. Muscovy ducks at four developmental stages, namely Embryonic Day 21 (E21), Embryonic Day 27 (E27), Hatching Day (D0), and Post-hatching Day 7 (D7), were used to isolate total RNA for analysis. RESULTS: A total of 68,161 genes and 472 mature microRNAs were identified. In order to uncover deeper insights into the regulation of mRNA by miRNAs, we conducted an integration of the differentially expressed miRNAs (known as DEMs) with the differentially expressed genes (referred to as DEGs) across various developmental stages. This integration allowed us to make predictions regarding the interactions between miRNAs and mRNA. Through this analysis, we identified a total of 274 DEGs that may serve as potential targets for the 68 DEMs. In the predicted miRNA‒mRNA interaction networks, let-7b, miR-133a-3p, miR-301a-3p, and miR-338-3p were the hub miRNAs. In addition, multiple DEMs also showed predicted target relationships with the DEGs associated with skeletal system development. These identified DEGs and DEMs as well as their predicted interaction networks involved in the regulation of energy homeostasis and muscle development were most likely to play critical roles in facilitating the embryo-to-hatchling transition. A candidate miRNA, miR-301a-3p, exhibited increased expression during the differentiation of satellite cells and was downregulated in the breast muscle tissues of Muscovy ducks at E21 compared to E27. A dual-luciferase reporter assay suggested that the ANKRD1 gene, which encodes a transcription factor, is a direct target of miR-301a-3p. CONCLUSIONS: miR-301a-3p suppressed the posttranscriptional activity of ANKRD1, which is an activator of satellite cell proliferation, as determined with gain- and loss-of-function experiments. miR-301a-3p functions as an inducer of myogenesis by targeting the ANKRD1 gene in Muscovy ducks. These results provide novel insights into the early developmental process of black Muscovy breast muscles and will improve understanding of the underlying molecular mechanisms.


Assuntos
MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Patos/genética , Patos/metabolismo , Perfilação da Expressão Gênica , Músculo Esquelético/metabolismo , RNA Mensageiro/genética , Transcriptoma
11.
BMC Plant Biol ; 23(1): 614, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38044435

RESUMO

Citrus melanose, caused by Diaporthe citri, is one of the most important and widespread fungal diseases of citrus. Previous studies demonstrated that the citrus host was able to trigger the defense response to restrict the spread of D. citri. However, the molecular mechanism underlying this defense response has yet to be elucidated. Here, we used RNA-Seq to explore the gene expression pattern at the early (3 days post infection, dpi) and late (14 dpi) infection stages of citrus leaves in response to D. citri infection, and outlined the differences in transcriptional regulation associated with defense responses. The functional enrichment analysis indicated that the plant cell wall biogenesis was significantly induced at the early infection stage, while the callose deposition response was more active at the late infection stage. CYP83B1 genes of the cytochrome P450 family were extensively induced in the callus deposition-mediated defense response. Remarkably, the gene encoding pectin methylesterase showed the highest upregulation and was only found to be differentially expressed at the late infection stage. Genes involved in the synthesis and regulation of phytoalexin coumarin were effectively activated. F6'H1 and S8H, encoding key enzymes in the biosynthesis of coumarins and their derivatives, were more strongly expressed at the late infection stage than at the early infection stage. Collectively, our study profiled the response pattern of citrus leaves against D. citri infection and provided the transcriptional evidence to support the defense mechanism.


Assuntos
Ascomicetos , Citrus , Xanthomonas , Folhas de Planta/genética , Folhas de Planta/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Xanthomonas/fisiologia
13.
BMC Vet Res ; 19(1): 232, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936127

RESUMO

BACKGROUND: Goose astrovirus (GoAstV) is an important pathogen that causes joint and visceral gout in goslings. It has been circulating in many provinces of China since 2017. Goose astrovirus genotypes 2 (GoAstV-2) is the main epidemic strain, and its high morbidity and mortality have caused huge economic losses to the goose industry. An accurate point-of-care detection for GoAstV-2 is of great significance. In this study, we developed a real-time reverse transcription recombinase polymerase amplification (RT-RPA) method for the on-site detection of GoAstV-2 infection. RESULTS: The real-time RT-RPA reaction was carried out at a constant temperature of 39 °C, and the entire detection time from nucleic acid preparation to the end of amplification was only 25 min using the portable device. The results of a specificity analysis showed that no cross-reaction was observed with other related pathogens. The detection limit of the assay was 100 RNA copies/µL. The low coefficient of variation value indicated excellent repeatability. We used 270 clinical samples to evaluate the performance of our established method, the positive concordance rates with RT-qPCR were 99.6%, and the linear regression analysis revealed a strong correlation. CONCLUSIONS: The established real-time RT-RPA assay showed high rapidity, specificity and sensitivity, which can be widely applied in the laboratory, field and especially in the resource-limited settings for GoAstV-2 point-of-care diagnosis.


Assuntos
Recombinases , Transcrição Reversa , Animais , Recombinases/metabolismo , Gansos , Sensibilidade e Especificidade , China , Técnicas de Amplificação de Ácido Nucleico/veterinária , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase em Tempo Real/métodos
14.
Cell Commun Signal ; 21(1): 317, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924124

RESUMO

Cardiovascular diseases pose a major threat worldwide. Common cardiovascular diseases include acute myocardial infarction (AMI), heart failure, atrial fibrillation (AF) and atherosclerosis. Glycolysis process often has changed during these cardiovascular diseases. Lactate, the end-product of glycolysis, has been overlooked in the past but has gradually been identified to play major biological functions in recent years. Similarly, the role of lactate in cardiovascular disease is gradually being recognized. Targeting lactate production, regulating lactate transport, and modulating circulating lactate levels may serve as potential strategies for the treatment of cardiovascular diseases in the future. The purpose of this review is to integrate relevant clinical and basic research on the role of lactate in the pathophysiological process of cardiovascular disease in recent years to clarify the important role of lactate in cardiovascular disease and to guide further studies exploring the role of lactate in cardiovascular and other diseases. Video Abstract.


Assuntos
Aterosclerose , Fibrilação Atrial , Doenças Cardiovasculares , Infarto do Miocárdio , Humanos , Ácido Láctico , Fibrilação Atrial/tratamento farmacológico
16.
Front Vet Sci ; 10: 1277293, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901107

RESUMO

Introduction: Honeycomb is a traditional natural health medicine and has antioxidant, antibacterial, anti-inflammatory, antiviral and antitumor activities. It is currently unclear whether honeycomb extract supplementation has positive effects on the intensive farming laying duck production. This study aims to evaluate the effects of honeycomb extracts on the laying performance, egg nutritional and flavor quality, serum biochemical indexes, and antioxidant and immune status in laying ducks. Methods: A total of 672 healthy 28-week-old Shanma laying ducks with similar laying performance and body weight were randomly distributed into four dietary treatments with 6 replicates of 28 birds. The birds in each treatment were fed the basal diet supplemented with 0 (control group), 0.5, 1.0 or 1.5 g/kg honeycomb extracts, respectively. Feed and water were provided ad libitum for 45 days. Laying performance, egg quality, egg nutrition and flavor quality, serum parameters were assessed. Results: The results showed that compared with the control group, honeycomb extracts addition significantly increased the average daily feed intake but did not affect the other laying performance indexes, egg quality or serum biochemical indexes of laying ducks. Dietary supplementation with honeycomb extracts significantly increased crude protein content and decreased the contents of cholesterol and trimethylamine in eggs. Diets supplemented with 1.5 g/kg honeycomb extracts significantly improved egg total amino acids and flavor amino acids contents, monounsaturated fatty acids and polyunsaturated fatty acids composition and enhanced the serum antioxidant activity and immune functions of ducks. Discussion: Duck eggs are rich in nutrients and a valuable source of high-quality food for human, while they are rarely consumed directly by consumers because of their stronger fishy odor and lower sensory quality. Many studies have showed that the influence of dietary supplementation on egg components. This study indicated that dietary supplementation with honeycomb extracts positively reduced the contents of egg cholesterol and trimethylamine, improve egg amino acids contents and fatty acid profiles, enhanced serum antioxidant and immune status of laying ducks. The recommended supplemental level of honeycomb extracts was 1.5 g/kg in the diet of laying ducks.

17.
J Clin Endocrinol Metab ; 109(1): e274-e279, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37466201

RESUMO

CONTEXT: Adrenal venous sampling (AVS) is considered the gold standard for differentiating unilateral and bilateral forms of primary aldosteronism. Currently, almost all AVS procedures are performed via femoral vein access. OBJECTIVE: The aim of this study was to evaluate the success rate and safety of AVS via an antecubital approach. METHODS: In a retrospective multicenter study involving 7 Chinese medical centers, patients with primary aldosteronism who underwent AVS via an antecubital approach between January 2012 and December 2018 were analyzed. Successful sampling was determined by a selectivity index (cortisol in the adrenal vein/cortisol in inferior vena cava) greater than 2. RESULTS: A total of 1226 participants (mean age, 47.1 years; 57.9% male) were included. The puncture site was right and left antecubital vein in 1211 (98.8%), and 15 (1.2%) patients. The access of 6 patients (0.5%) was changed to right femoral vein due to the failure of antecubital vein cannulation or anatomic variation of adrenal vein. The success rate of bilateral, right, and left sampling was 91.5%, 94.9%, and 95.1%, respectively. The success rate of bilateral, right, and left sampling increased from 82.9%, 87.1%, and 88.6% during the initial 70 cases (total of initial 10 cases at each center) to 92.0% (P = .012), 95.3% (P = .008), and 95.5% (P = .018) with subsequent cases. Adrenal vein rupture occurred in 5 patients (0.41%), with no sequelae. CONCLUSION: This multicenter study demonstrates that AVS via an antecubital approach is safe and feasible, with a high rate of successful sampling, which may be an alternative to the femoral vein access method.


Assuntos
Hiperaldosteronismo , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Hiperaldosteronismo/diagnóstico , Hidrocortisona , Glândulas Suprarrenais/irrigação sanguínea , Veia Cava Inferior , Estudos Retrospectivos , Veia Femoral , Aldosterona
18.
Poult Sci ; 102(8): 102830, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37343345

RESUMO

Poultry is one of the most commonly farmed species and the most widespread meat industries. However, numerous poultry flocks have been long threatened by pathogenic bacterial infections, especially antimicrobial resistant pathogens. Here the prevalence and the antimicrobial resistance (AMR) profiles of bacterial pathogens isolated from poultry in Jiangxi Province, China were investigated. From 2020 to 2022, 283 tissue and liquid samples were collected from clinically diseased poultry, including duck, chicken, and goose, with an overall positive isolation rate of 62.90%. Among all the 219 bacterial isolates, 29 strains were gram-positive and 190 strains were gram-negative. Major bacteria species involved were avian pathogenic Escherichia coli (APEC; 57.53%; 126/219), followed by Salmonella spp. (11.87%, 26/219), Pasteurella multocida (6.39%, 14/219), and Staphylococcus spp. (1.22%, 11/219). Antimicrobial susceptibility testing showed the APEC isolates displayed considerably higher levels of AMR than the Salmonella and P. multocida isolates. The APEC isolates showed high resistance rate to amoxicillin (89.68%), ampicillin (89.68%), and florfenicol (83.33%), followed by streptomycin (75.40%), cefradine (65.87%), and enrofloxacin (64.29%). Multidrug-resistant isolates were observed in APEC (99.21%), Salmonella spp. (96.16%), and P. multocida (85.71%), and nearly 3 quarters of the APEC strains were resistant to 7 or more categories of antimicrobial drugs. Moreover, blaNDM genes associated with carbapenemase resistance and mcr-1 associated with colisitin resistance were detected in the APEC isolates. Our findings could provide evidence-based guidance for veterinarians to prevent and control bacterial diseases, and be helpful for monitoring the emerging and development of AMR in poultry bacterial pathogens.


Assuntos
Infecções por Escherichia coli , Pasteurella multocida , Doenças das Aves Domésticas , Animais , Aves Domésticas , Antibacterianos/farmacologia , Galinhas , Farmacorresistência Bacteriana , Prevalência , Escherichia coli , Infecções por Escherichia coli/veterinária , Salmonella , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/microbiologia
19.
Poult Sci ; 102(8): 102753, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37267641

RESUMO

Here, we examined the effects of crossbreeding and sex on growth performance, slaughter performance, and meat quality in Xingguo gray (XG) goose, using transcriptomic and metabolomic techniques. The experiment was conducted using 400 goslings (1-day old) of 2 genotypes: the XG breed and its ternary hybrids [F2 geese; (XG Goose♂ × Yangzhou Goose♀)♀ × Shitou Goose♂]. The goslings were divided into 4 groups: female XG, male XG, female F2 geese, and male F2 geese, and growth parameters were examined at 70 d of age, using 30 birds from each group. Following slaughter, samples of breast and thigh muscles were collected from each group for chemical, metabolome, and transcriptome analyses. Growth rate, live body and slaughter weights, meat chemical composition, and muscle fiber diameter were affected by crossbreeding and sex. Crossbreeding significantly improved the dressing percentage, semieviscerated rate, eviscerated yield, and abdominal fat yield of XG geese. To clarify the potential regulatory network affected by crossbreeding and sex, we used RNA-seq and nontargeted metabolomics to detect changes in male and female goose breast muscle. The transcriptome results showed that there were 534, 323, 297, and 492 differently expressed genes (DEGs) among the 4 comparison groups (XG-Female vs. F2-Female, XG-Male vs. F2-Male, F2-Male vs. F2-Female, and XG-Male vs. XG-Female, respectively) that were mainly related to muscle growth and development and fatty acid metabolism pathways. A total of 141 significantly differentially accumulated metabolites (DAMs) were enriched in serine and threonine, propionate, and pyruvate metabolism. Finally, we comprehensively analyzed the metabolome and transcriptome data and found that many DEGs and DAMs played crucial roles in lipid metabolism and muscle growth and development. In summary, crossbreeding can improve XG goose production performance and affect breast muscle gene expression and metabolites in both female and male geese.


Assuntos
Gansos , Multiômica , Feminino , Animais , Masculino , Gansos/fisiologia , Galinhas , Carne/análise , Hibridização Genética
20.
Adv Sci (Weinh) ; 10(21): e2301419, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37144541

RESUMO

The uptake of hexavalent chromium (Cr(VI)) ions from wastewater is of great significance for environmental remediation and resource utilization. In this study, a self-designed instrument equipped with an oxidized mesoporous carbon monolith (o-MCM) as an electro-adsorbent is developed. o-MCM with a super hydrophilic surface displayed a high specific surface area (up to 686.5 m2  g-1 ). With the assistance of an electric field (0.5 V), the removal capacity of Cr(VI) ions is as high as 126.6 mg g-1 , much higher than that without an electric field (49.5 mg g-1 ). During this process, no reduction reaction of Cr(VI) to Cr(III) ions is observed. After adsorption, the reverse electrode with 10 V is used to efficiently desorb the ions on the carbon surface. Meanwhile, the in situ regeneration of carbon adsorbents can be obtained even after ten recycles. On this basis, the enrichment of Cr(VI) ions in a special solution is achieved with the assistance of an electric field. This work lays a foundation for the uptake of heavy metal ions from wastewater with the assistance of the electric field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA