Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Talanta ; 277: 126443, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897007

RESUMO

Stable detection of diazinon (DZN) residues in vegetables is important for food safety. In this work, an electrochemiluminescence (ECL) aptasensor with dual-catalytic glucose in-situ production of H2O2 was constructed for the stable detection of DZN in vegetables. Firstly, MWCNTs@MB was prepared using π-π stacking interactions between methylene blue (MB) and multi-walled carbon nanotubes (MWCNTs) to enhance the loading of MB on an electrode and thus catalyze the generation of H2O2 from glucose. Secondly, Cu2O@AuNPs was formed by loading AuNPs on the surface of Cu2O through spontaneous reduction reaction, which improved the interfacial charge transfer, Cu2O nano-enzyme had glucose oxidase mimicking activity and could further catalyze the production of more H2O2 from glucose. MWCNTs@MB and Cu2O@AuNPs played a key role in the in-situ generation of co-reacting reagent H2O2, which solved the problem of unstable detection caused by the easy decomposition of the H2O2 solution added to the luminescence system. In addition, the aptamer was immobilized on the electrode surface by forming Au-S bonds with Cu2O@AuNPs. As a result, the ECL aptasensor performed good linearity in 1.00 pg mL-1-1.00 µg mL-1 and a low limit of detection (LOD) to 0.39 pg mL-1 (S/N = 3). This work provided an effective method for the accurate and stable detection of DZN residues in vegetables, which was of great significance in ensuring food safety and assessing the environmental risk of DZN.

2.
J Hazard Mater ; 476: 134935, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38905980

RESUMO

Time-resolved fluorescent lateral immunoassay strip (TRFLIS) is a reliable and rapid method for detecting acetamiprid. However, its sensitivity is often affected by the structural patterns and stability of the fluorescent probe. Researchers have shown significant interests in using goat anti-mouse IgG (GaMIgG) which is indirectly bound to time-resolved fluorescent microsphere (TRFM) and antibody. This allowed for oriented modification of the antibody. However, the stability of fluorescent probe in this binding mode remained unexplored. Herein, 1-ethyl-(3-dimethylaminopropyl) carbodiimide hydrochloride was innovatively used as a cross-linking agent to enhance the binding of antibody to GaMIgG, which improved the stability of the fluorescent probe. Under optimal working conditions, this strategy exhibited a wide linear response range of 5-700 ng/mL. Its limit of detection (LOD) was 0.62 ng/mL, the visual LOD was 5 ng/mL, and the limit of quantification (LOQ) of 2.06 ng/mL. Additionally, under tomato matrix, leek matrix and Chinese cabbage matrix, the linear response ranges were 5-400, 5-300, and 5-700 ng/mL, with LODs of 0.16, 0.60, and 0.41 ng/mL, with LOQs of 0.53, 2.01 and 1.37 ng/mL, respectively. In conclusion, this strategy effectively reduced the dosage of acetamiprid antibody compared with TRFM directly linking acetamiprid antibody, and greatly increased the sensitivity of TRFLIS. Meanwhile, it demonstrated outstanding specificity and accuracy in acetamiprid detection and had been successfully applied to vegetable samples. This method enables rapid and accurate detection of large-volume samples by combining qualitative and quantitative methods. As such, it has great potential in the development of low-cost and high-performance immunochromatographic platforms.

3.
Sci Rep ; 14(1): 13823, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879676

RESUMO

Exoplanet atmospheres are expected to vary significantly in thickness and chemical composition, leading to a continuum of differences in surface pressure and atmospheric density. This variability is exemplified within our Solar System, where the four rocky planets exhibit surface pressures ranging from 1 nPa on Mercury to 9.2 MPa on Venus. The direct effects and potential challenges of atmospheric pressure and density on life have rarely been discussed. For instance, atmospheric density directly affects the possibility of active flight in organisms, a critical factor since without it, dispersing across extensive and inhospitable terrains becomes a major limitation for the expansion of complex life. In this paper, we propose the existence of a critical atmospheric density threshold below which active flight is unfeasible, significantly impacting biosphere development. To qualitatively assess this threshold and differentiate it from energy availability constraints, we analyze the limits of active flight on Earth, using the common fruit fly, Drosophila melanogaster, as a model organism. We subjected Drosophila melanogaster to various atmospheric density scenarios and reviewed previous data on flight limitations. Our observations show that flies in an N2-enriched environment recover active flying abilities more efficiently than those in a helium-enriched environment, highlighting behavioral differences attributable to atmospheric density vs. oxygen deprivation.

4.
Food Chem ; 456: 139946, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38852450

RESUMO

To effectively monitor multi-residues of penicillin antibiotics (PENs) in milk, we developed a novel ratiometric electrochemical aptasensor enabling simultaneous detection of PENs. The aptasensor employed a broad-spectrum aptamer as a recognition element, niobium carbide functionalized with methylene blue (Nb2C-MB) as a reference signal generator, and a ferrocene-labeled aptamer (Fc-Apt) as an output signal. Electrodes were modified with Fe-N-C doped carbon nanotubes (Fe-N-C-CNTs) to amplify detection signals further. During detection, Fc-Apt binding to PENs decreased Fc current intensity (IFc) and increased MB current intensity (IMB). The simultaneous detection of PENs was achieved using IMB/IFc as a quantitative signal. Under optimal conditions, a good linear relationship between IMB/IFc and antibiotic concentration was observed, indicating the aptasensor had a robustness. The limits of detection of aptasensor for four penicillin antibiotics and their mixed targets were 0.093-0.191 nM. This work provides a new approach to multi-residue detection of the same class of antibiotics.

5.
Food Chem ; 447: 139011, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38492303

RESUMO

In this work, a simple synthesis of low-toxicity transition metal material of WO3-x dots was used as a co-reactant with Au@SiO2 as a core-shell material and a signal amplification factor to collaboratively promote Ru(bpy)32+ electrochemiluminescence (ECL) for the construction of a highly sensitive aptasensor for the detection of diazinon (DZN) in vegetables. Electrodes modified with multi-walled carbon nanotubes-chitosan composite membranes (MWCNTs-CS) were used to load and immobilize more Ru(bpy)32+.can load more Ru(bpy)32+. WO3-x dots synthesized by a simple method showed excellent ECL efficiency as a novel co-reactant for Ru(bpy)32+. Under optimized conditions, this aptasensor for DZN has a wide detection range (10 pg mL-1 - 1 µg mL-1.) and a low detection limit (0.0197 ng L-1). The aptasensor has shown good results in the analysis of real samples in the experiment. This work provides a new approach to the construction of a novel electrochemiluminescence sensor for the detection of pesticides.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanocápsulas , Nanotubos de Carbono , Diazinon , Dióxido de Silício , Verduras , Medições Luminescentes/métodos , Ouro , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
6.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38341797

RESUMO

Diffusion of electrons over distances on the order of 100 µm has been observed in crystals of a small tetraheme cytochrome (STC) from Shewanella oneidensis [J. Huang et al. J. Am. Chem. Soc. 142, 10459-10467 (2020)]. Electron transfer between hemes in adjacent subunits of the crystal is slower and more strongly dependent on temperature than had been expected based on semiclassical electron-transfer theory. We here explore explanations for these findings by molecular-dynamics simulations of crystalline and monomeric STC. New procedures are developed for including time-dependent quantum mechanical energy differences in the gap between the energies of the reactant and product states and for evaluating fluctuations of the electronic-interaction matrix element that couples the two hemes. Rate constants for electron transfer are calculated from the time- and temperature-dependent energy gaps, coupling factors, and Franck-Condon-weighted densities of states using an expression with no freely adjustable parameters. Back reactions are considered, as are the effects of various protonation states of the carboxyl groups on the heme side chains. Interactions with water are found to dominate the fluctuations of the energy gap between the reactant and product states. The calculated rate constant for electron transfer from heme IV to heme Ib in a neighboring subunit at 300 K agrees well with the measured value. However, the calculated activation energy of the reaction in the crystal is considerably smaller than observed. We suggest two possible explanations for this discrepancy. The calculated rate constant for transfer from heme I to II within the same subunit of the crystal is about one-third that for monomeric STC in solution.


Assuntos
Citocromos , Elétrons , Transporte de Elétrons , Citocromos/química , Citocromos/metabolismo , Simulação de Dinâmica Molecular , Heme/química , Oxirredução
7.
Heliyon ; 10(3): e25167, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38333799

RESUMO

In this work, a novel ternary nanocomposite of PEI/RuSi-MWCNTs was designed and synthesized for the first time, which an ultrasensitive and self-enhanced electrochemiluminescent (ECL) aptasensor was developed for the detection of profenofos residues in vegetables. The self-enhanced complex PEI-Ru (II) enhanced the emission and stability of ECL, and the multi-walled carbon nanotubes (MWCNTs) acted as an excellent carrier and signal amplification. The PEI/RuSi-MWCNTs were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive spectrometer (EDS). The incorporation of gold nanoparticles (AuNPs) improved the performance of the sensor and provided a platform for the immobilization of the aptamer. The results of the experiment showed that the presence of profenofos significantly suppressed the electrochemiluminescence intensity of the sensor. The detection sensitivity of the aptamer sensor was in the range of 1 × 10-2 to 1 × 103 ng/mL. Under optimal conditions, the limit of detection (LOD) of the sensor for profenofos was 1.482 × 10-3 ng/mL. The sensor had excellent stability, reproducibility and specificity. The recoveries of the sensor ranged from 92.29 % to 106.47 % in real sample tests.

8.
Anal Chim Acta ; 1287: 341938, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182333

RESUMO

Pathogenic bacteria are primarily kinds of food hazards that provoke serious harm to human health via contaminated or spoiled food. Given that pathogenic bacteria continue to reproduce and expand once they contaminate food, pathogenic bacteria of high concentration triggers more serious losses and detriments. Hence, it is essential to detect low-dose pollution at an early stage with high sensitivity. Aptamers, also known as "chemical antibodies", are oligonucleotide sequences that have attracted much attention owing to their merits of non-toxicity, small size, variable structure as well as easy modification of functional group. Aptamer-based bioanalysis has occupied a critical position in the field of rapid detection of pathogenic bacteria. This is attributed to the unique advantage of using aptamers as recognition elements in signal amplification strategies. The signal amplification strategy is an effective means to improve the detection sensitivity. Some diverse signal amplification strategies emphasize the synthesis and assembly of nanomaterials with signal amplification capabilities, while others introduce various nucleic acid amplification techniques into the detection system. This review focuses on a variety of signal amplification strategies employed in aptamer-based detection approaches to pathogenic bacteria. Meanwhile, we provided a detailed introduction to the design principles and characteristics of signal amplification strategies, as well as the improvement of sensor sensitivity. Ultimately, the existing issues and development trends of applying signal amplification strategies in apta-sensing analysis of pathogenic bacteria are critically proposed and prospected. Overall, this review discusses from a new perspective and is expected to contribute to the further development of this field.


Assuntos
Anticorpos , Nanoestruturas , Humanos , Bactérias/genética , Poluição Ambiental , Técnicas de Amplificação de Ácido Nucleico , Oligonucleotídeos
9.
Talanta ; 269: 125471, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061203

RESUMO

Gold nanoparticles (AuNPs)@N-(4-aminobutyl)-N-ethylisoluminol (ABEI)@Titanium dioxide nanorods (TiO2NRs) were used as sensing materials to produce a unique encapsulated nanostructure aptasensor for the detection of acetamiprid residues in this work. ABEI, an analog of luminol, was extensively used as an electrochemiluminescence (ECL) reagent. The ECL mechanism of ABEI- hydrogen peroxide (H2O2) system had connections to a number of oxygen-centered free radicals. TiO2NRs improved ECL response with high electron transfer and a specific surface area. AuNPs were easy to biolabel and could catalyze H2O2 to enhance ECL signal. AuNPs were wrapped around TiO2NRs by utilizing the reduction property of ABEI to form wrapped modified nanomaterials. The sulfhydryl-modified aptamer bound to the nanomaterial by forming gold-sulfur (Au-S) bonds. The aptamer selectively bound to its target with the addition of acetamiprid, which caused a considerable decrease in ECL intensity and enabled quantitative detection of acetamiprid. The aptasensor showed good stability, repeatability and specificity with a broad detection range (1×10-2-1×103 nM) and a lower limit of detection (3 pM) for acetamiprid residues in vegetables. Overall, this aptasensor presents a simple and highly sensitive method for ECL detecting acetamiprid, with potential applications in vegetable safety monitoring.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos , Ouro/química , Verduras , Nanopartículas Metálicas/química , Limite de Detecção , Peróxido de Hidrogênio/química , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Luminol/química , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos
10.
Sci Total Environ ; 912: 168832, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38036131

RESUMO

The aptamer (Apt) and the molecularly imprinted polymer (MIP), as effective substitutes for antibodies, have received widespread attention from researchers because of their creation. However, the low stability of Apt in harsh detection environment and the poor specificity of MIP have hindered their development. Therefore, some researchers have attempted to combine MIP with Apt to explore whether the effect of "1 + 1 > 2" can be achieved. Since its first report in 2013, MIP-Apt dual recognition elements have become a highly focused research direction in the fields of biology and chemistry. MIP-Apt dual recognition elements not only possess the high specificity of Apt and the high stability of MIP in harsh detection environment, but also have high sensitivity and affinity. They have been successfully applied in medical diagnosis, food safety, and environmental monitoring fields. This article provides a systematic overview of three preparation methods for MIP-Apt dual recognition elements and their application in eight different types of sensors. It also provides effective insights into the problems and development directions faced by MIP-Apt dual recognition elements.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Inocuidade dos Alimentos , Impressão Molecular/métodos
11.
Anal Chim Acta ; 1280: 341842, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37858545

RESUMO

In this work, a portable multichannel detection instrument based on time-resolved fluorescence immunochromatographic test strip (TRFIS) was proposed for on-site detecting pesticide residues in vegetables. Its hardware consisted of a silicon photodiode and excitation light source array, a mainboard of the lower machine with STMicroelectronics 32 (STM32) and a linear stepping motor. While detecting, cardboard with 6-channel TRFIS was pulled into the cassette by the stepping motor. The peak area of the test (T) line and control (C) line of each TRFIS was sampled and calculated by software, then the concentration of the detected pesticide was obtained according to the ratio of the T to C value. This instrument could sample 6-channel TRFIS within 30 s simultaneously, and it exhibited excellent accuracy with a 2.5% average coefficient of variation for each channel (n = 12). In addition, the TRFIS was constructed by using europium oxide time-resolved fluorescent microspheres to label the monoclonal antibody against acetamiprid and form a fluorescent probe, which was fixed on the binding pad. The TRFIS was used for the detection of acetamiprid in celery cabbage, cauliflower and baby cabbage. This instrument was used to complete the qualitative and quantitative analysis of the TRFIS, so as to enhance the practical application of the detection method. This TRFIS possessed excellent linearity ranging from 0.25 mg kg-1 to 1.75 mg kg-1 for the detection of acetamiprid, and the limit of detection were 0.056-0.074 mg kg-1 in the different vegetable matrix. The platform combines the accuracy and portability of traditional test strips with the highly sensitive and efficient fluorescence intensity recognition function of detection equipment, which shows a great application prospect of multi-channel rapid detection of small molecule pollutants in the field.


Assuntos
Resíduos de Praguicidas , Resíduos de Praguicidas/análise , Verduras , Fluorescência , Anticorpos Monoclonais , Microesferas , Limite de Detecção , Cromatografia de Afinidade/métodos
12.
Small ; 19(52): e2304013, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37653599

RESUMO

The ability to redirect electron transport to new reactions in living systems opens possibilities to store energy, generate new products, or probe physiological processes. Recent work by Huang et al. showed that 3D crystals of small tetraheme cytochromes (STC) can transport electrons over nanoscopic to mesoscopic distances by an electron hopping mechanism, making them promising materials for nanowires. However, fluctuations at room temperature may distort the nanostructure, hindering efficient electron transport. Classical molecular dynamics simulations of these fluctuations at the nano- and mesoscopic scales allowed us to develop a graph network representation to estimate maximum electron flow that can be driven through STC wires. In longer nanowires, transient structural fluctuations at protein-protein interfaces tended to obstruct efficient electron transfer, but these blockages are ameliorated in thicker crystals where alternative electron transfer pathways become more efficient. The model implies that more flexible proteinprotein interfaces limit the required minimum diameter to carry currents commensurate with conventional electronics.


Assuntos
Nanofios , Transporte de Elétrons , Citocromos/química , Citocromos/metabolismo , Simulação de Dinâmica Molecular , Proteínas/metabolismo
13.
Sci Rep ; 13(1): 13576, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604949

RESUMO

Waste gas products from technological civilizations may accumulate in an exoplanet atmosphere to detectable levels. We propose nitrogen trifluoride (NF3) and sulfur hexafluoride (SF6) as ideal technosignature gases. Earth life avoids producing or using any N-F or S-F bond-containing molecules and makes no fully fluorinated molecules with any element. NF3 and SF6 may be universal technosignatures owing to their special industrial properties, which unlike biosignature gases, are not species-dependent. Other key relevant qualities of NF3 and SF6 are: their extremely low water solubility, unique spectral features, and long atmospheric lifetimes. NF3 has no non-human sources and was absent from Earth's pre-industrial atmosphere. SF6 is released in only tiny amounts from fluorine-containing minerals, and is likely produced in only trivial amounts by volcanic eruptions. We propose a strategy to rule out SF6's abiotic source by simultaneous observations of SiF4, which is released by volcanoes in an order of magnitude higher abundance than SF6. Other fully fluorinated human-made molecules are of interest, but their chemical and spectral properties are unavailable. We summarize why life on Earth-and perhaps life elsewhere-avoids using F. We caution, however, that we cannot definitively disentangle an alien biochemistry byproduct from a technosignature gas.

14.
Food Chem ; 429: 136857, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37463538

RESUMO

At present, due to the coexistence of multiple pesticides in vegetables and the enhanced toxicity, a simultaneous detection method for multiple pesticides is urgently needed. In this work, two types of core-shell nanomaterials, Ag-Au core-shell nanoparticles (Ag@Au NPs) and Cu2O-Au core-shell nanoparticles (Cu2O@Au NPs), were synthesized and labeled with acetamiprid aptamer and malathion aptamer to prepare two novel electroactive signal probes, respectively. The two probes were hybridized on the surface of the electrode by the principle of base complementary pairing between the aptamers and the thiolated DNA oligonucleotide sequences, and a dual-signal electrochemical aptasensor for the simultaneous detection of acetamiprid and malathion was established by modified glassy carbon electrode (GCE). The limits of detection (LOD) were calculated to be 43.7 pg mL-1 for acetamiprid and 63.4 pg mL-1 for malathion. The aptasensor determined acetamiprid and malathion in spinach and rape with the recovery rates of 88.9%-112.5% and 98.0%-114.1%, respectively.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Nanopartículas , Praguicidas , Malation , Técnicas Biossensoriais/métodos , Praguicidas/análise , Limite de Detecção , Técnicas Eletroquímicas/métodos , Ouro
15.
Med Phys ; 50(10): 6079-6095, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37517073

RESUMO

BACKGROUND: Microvascular invasion (MVI) is a major risk factor, for recurrence and metastasis of hepatocellular carcinoma (HCC) after radical surgery and liver transplantation. However, its diagnosis depends on the pathological examination of the resected specimen after surgery; therefore, predicting MVI before surgery is necessary to provide reference value for clinical treatment. Meanwhile, predicting only the existence of MVI is not enough, as it ignores the degree, quantity, and distribution of MVI and may lead to MVI-positive patients suffering due to inappropriate treatment. Although some studies have involved M2 (high risk of MVI), majority have adopted the binary classification method or have not included radiomics. PURPOSE: To develop three-class classification models for predicting the grade of MVI of HCC by combining enhanced computed tomography radiomics features with clinical risk factors. METHODS: The data of 166 patients with HCC confirmed by surgery and pathology were analyzed retrospectively. The patients were divided into the training (116 cases) and test (50 cases) groups at a ratio of 7:3. Of them, 69 cases were MVI positive in the training group, including 45 cases in the low-risk group (M1) and 24 cases in the high-risk group (M2), and 47 cases were MVI negative (M0). In the training group, the optimal subset features were obtained through feature selection, and the arterial phase radiomics model, portal venous phase radiomics model, delayed phase radiomics model, three-phase radiomics model, clinical imaging model, and combined model were developed using Linear Support Vector Classification. The test group was used for validation, and the efficacy of each model was evaluated through the receiver operating characteristic curve (ROC). RESULTS: The clinical imaging features of MVI included alpha-fetoprotein, tumor size, tumor margin, peritumoral enhancement, intratumoral artery, and low-density halo. The area under the curve (AUC) of the ROC values of the clinical imaging model for M0, M1, and M2 were 0.831, 0.701, and 0.847, respectively, in the training group and 0.782, 0.534, and 0.785, respectively, in the test group. After combined radiomics analyis, the AUC values for M0, M1, and M2 in the test group were 0.818, 0.688, and 0.867, respectively. The difference between the clinical imaging model and the combined model was statistically significant (p = 0.029). CONCLUSION: The clinical imaging model and radiomics model developed in this study had a specific predictive value for HCC MVI grading, which can provide precise reference value for preoperative clinical diagnosis and treatment. The combined application of the two models had a high predictive efficacy.

16.
Talanta ; 265: 124843, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37399648

RESUMO

In order to achieve a highly sensitive detection of procymidone in vegetables, three paper-based biosensors based on a core biological immune scaffold (CBIS) were developed, which were time-resolved fluorescence immunochromatography strips with Europium (III) oxide (Eu-TRFICS). Goat anti-mouse IgG and europium oxide time-resolved fluorescent microspheres formed secondary fluorescent probes. CBIS was formed by secondary fluorescent probes and procymidone monoclonal antibody (PCM-Ab). The first type of Eu-TRFICS (Eu-TRFICS-(1)) fixed secondary fluorescent probes on a conjugate pad, and PCM-Ab was mixed with a sample solution. The second type of Eu-TRFICS (Eu-TRFICS-(2)) fixed CBIS on the conjugate pad. The third type of Eu-TRFICS (Eu-TRFICS-(3)) was directly mixed CBIS with the sample solution. They solved the problems of steric hindrance of antibody labeling, insufficient exposure of antigen recognition region and easy loss of activity in traditional methods. They realized multi-dimensional labeling and directional coupling. They replaced the loss of antibody activity. And the three types of Eu-TRFICS were compared, among which Eu-TRFICS-(1) was the best detection choice. Antibody usage was reduced by 25% and sensitivity was increased by 3 times. Its detection range was 1-800 ng/mL, the limit of detection (LOD) was 0.12 ng/mL with the visible LOD (vLOD) of 5 ng/mL.

17.
Food Chem ; 424: 136441, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37244182

RESUMO

Aflatoxin contamination in peanut kernels seriously harms the health of humans and causes significant economic losses. Rapid and accurate detection of aflatoxin is necessary to minimize its contamination. However, current detection methods are time-consuming, expensive and destructive to samples. Therefore, short-wave infrared (SWIR) hyperspectral imaging coupled with multivariate statistical analysis was used to investigate the spatio-temporal distribution patterns of aflatoxin, and quantitatively detect the aflatoxin B1 (AFB1) and total aflatoxin in peanut kernels. In addition, Aspergillus flavus contamination was identified to prevent the production of aflatoxin. The result of validation set demonstrated that SWIR hyperspectral imaging could predict the contents of the AFB1 and total aflatoxin accurately, with residual prediction deviation values of 2.7959 and 2.7274, and limits of detection of 29.3722 and 45.7429 µg/kg, respectively. This study presents a novel method for the quantitative detection of aflatoxin and offers an early warning system for its potential application.


Assuntos
Aflatoxinas , Humanos , Aflatoxinas/análise , Aflatoxina B1/análise , Arachis , Imageamento Hiperespectral , Contaminação de Alimentos/análise , Aspergillus flavus
18.
Biosens Bioelectron ; 227: 114853, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36863194

RESUMO

Due to the diversification and complexity of organophosphorus pesticide residues brings great challenges to the detection work. Therefore, we developed a dual-ratiometric electrochemical aptasensor that could detect malathion (MAL) and profenofos (PRO) simultaneously. In this study, metal ions, hairpin-tetrahedral DNA nanostructures (HP-TDN) and nanocomposites were used as signal tracers, sensing framework and signal amplification strategy respectively to develop the aptasensor. Thionine (Thi) labeled HP-TDN (HP-TDNThi) provided specific binding sites for assembling Pb2+ labeled MAL aptamer (Pb2+-APT1) and Cd2+ labeled PRO aptamer (Cd2+-APT2). When the target pesticides were present, Pb2+-APT1 and Cd2+-APT2 were dissociated from the hairpin complementary strand of HP-TDNThi, resulting in reduced oxidation currents of Pb2+ (IPb2+) and Cd2+ (ICd2+), respectively, while the oxidation currents of Thi (IThi) remained unchanged. Thus, IPb2+/IThi and ICd2+/IThi oxidation current ratios were used to quantify MAL and PRO, respectively. In addition, the gold nanoparticles (AuNPs) encapsulated in the zeolitic imidazolate framework (ZIF-8) nanocomposites (Au@ZIF-8) greatly increased the catch of HP-TDN, thereby amplifying the detection signal. The rigid three-dimensional structure of HP-TDN could reduce the steric hindrance effect on the electrode surface, which could greatly improve the recognition efficiency of the aptasensor for the pesticide. Under the optimal conditions, the detection limits of the HP-TDN aptasensor for MAL and PRO were 4.3 pg mL-1 and 13.3 pg mL-1, respectively. Our work proposed a new approach to fabricating a high-performance aptasensor for simultaneous detection of multiple organophosphorus pesticides, opening a new avenue for the development of simultaneous detection sensors in the field of food safety and environmental monitoring.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Nanocompostos , Praguicidas , Ouro/química , Malation , Compostos Organofosforados , Chumbo , Cádmio , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , DNA/química , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Limite de Detecção
19.
Sensors (Basel) ; 23(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36772386

RESUMO

In view of the great threat of chloramphenicol (CAP) to human health and the fact that a few producers have illegally used CAP in the food production process to seek economic benefits in disregard of laws and regulations and consumer health, we urgently need a detection method with convenient operation, rapid response, and high sensitivity capabilities to detect CAP in food to ensure people's health. Herein, a molecularly imprinted polymer (MIP) electrochemical sensor based on a dual-signal strategy was designed for the highly sensitive analysis of CAP in milk. The NiFe Prussian blue analog (NiFe-PBA) and SnS2 nanoflowers were modified successively on the electrode surface to obtain dual signals from [Fe(CN)6]3-/4- at 0.2 V and NiFe-PBA at 0.5 V. SiO2-COOH@MIPs that could specifically recognize CAP were synthesized via thermal polymerization using carboxylated silica microspheres (SiO2-COOH) as carriers. When the CAP was adsorbed by SiO2-COOH@MIPs, the above two oxidation peak currents decreased at the same time, allowing the double-signal analysis. The SiO2-COOH@MIPs/SnS2/NiFe-PBA/GCE sensor used for determining CAP was successfully prepared. The sensor utilized the interactions of various nanomaterials to achieve high-sensitivity dual-signal detection, which had certain innovative significance. At the same time, the MIPs were synthesized using a surface molecular imprinting technology, which could omit the time of polymerization and elution and met the requirements for rapid detection. After optimizing the experimental conditions, the detection range of the sensor was 10-8 g/L-10-2 g/L and the limit of detection reached 3.3 × 10-9 g/L (S/N = 3). The sensor had satisfactory specificity, reproducibility, and stability, and was successfully applied to the detection of real milk samples.


Assuntos
Impressão Molecular , Dióxido de Silício , Humanos , Animais , Dióxido de Silício/química , Polímeros/química , Cloranfenicol , Leite , Reprodutibilidade dos Testes , Impressão Molecular/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Limite de Detecção
20.
Sci Total Environ ; 868: 161692, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36682560

RESUMO

In the work, based on self-assembly dual-site DNA tetrahedral scaffold (DTS), thionine (Thi), and 6-(Ferrocenyl)hexanethiol (Fc6S), a multiplex strategy electrochemical platform was fabricated for the simultaneous detection of profenofos (PFF) and diazinon (DZN). Thi and Fc6S were used to label aptamers for the synthesis of probes respectively. Notably, Thi and Fc6S engendered recognizable DPV peaks at different potentials to achieve simultaneous detection of PFF and DZN. In addition to increasing the conductivity of the electrode, the combination of carboxylic acid functionalized multi-walled carbon nanotubes and ferroferric oxide nanoparticles could also increase its higher specific surface area of the electrode interface to adsorb more DTS. Because of the mechanical rigidity of the DTS, the DTS could keep a complementary chain upright and provide more binding sites for aptamers, the binding efficiency between the complementary chain and 2 binding aptamers could be improved. Comparing the aptasensors performance of single-strand DNA with that of the DTS with complementary strands, the benefits of the DTS were highlighted in this system. Under optimal conditions, the detection limits of PFF and DZN were both 3.33 pg/mL and the detection ranges were both 1.00 × 101-1.00 × 107 pg/mL. Meanwhile, the recoveries of PFF and DZN were 87.15%-117.34% and 91.20%-114.19%, respectively. The aptasensor could realize the simultaneous detection of PFF and DZN in vegetables. Furthermore, the aptasensor also had good stability and selectivity. This strategy could provide a good reference for developing effective aptasensors for the simultaneous detection of other small molecules and toxins.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos de Carbono , Diazinon , Técnicas Eletroquímicas , Nanotubos de Carbono/química , Aptâmeros de Nucleotídeos/química , Nanopartículas Metálicas/química , DNA , Limite de Detecção , Ouro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA