RESUMO
Recently, the usage of zebrafish for pain studies has increased in the past years, especially due to its robust pain-stimulated behaviors. Fin amputation has been demonstrated to induce a noxious response in zebrafish. However, based on the prior study, although lidocaine, the most used painkiller in zebrafish, has been shown to ameliorate amputated zebrafish behaviors, it still causes some prolonged effects. Therefore, alternative painkillers are always needed to improve the treatment quality of fin-amputated zebrafish. Here, the effects of several analgesics in recovering zebrafish behaviors post-fin amputation were evaluated. From the results, five painkillers were found to have potentially beneficial effects on amputated fish behaviors. Overall, these results aligned with their binding energy level to target proteins of COX-1 and COX-2. Later, based on their sub-chronic effects on zebrafish survivability, indomethacin, and diclofenac were further studied. This combination showed a prominent effect in recovering zebrafish behaviors when administered orally or through waterborne exposure, even with lower concentrations. Next, based on the ELISA in zebrafish brain tissue, although some changes were found in the treated group, no statistical differences were observed in most of the tested biomarkers. However, since heatmap clustering showed a similar pattern between biochemical and behavior endpoints, the minor changes in each biomarker may be sufficient in changing the fish behaviors.
Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Amputação Cirúrgica , Analgésicos , DorRESUMO
Ractopamine (RAC) is a synthetic phenethanolamine, ß-adrenergic agonist used as a feed additive to develop leanness and increase feed conversion efficiency in different farm animals. While RAC has been authorized as a feed additive for pigs and cattle in a limited number of countries, a great majority of jurisdictions, including the European Union (EU), China, Russia, and Taiwan, have banned its use on safety grounds. RAC has been under long scientific and political discussion as a controversial antibiotic as a feed additive. Here, we will present significant information on RAC regarding its application, detection methods, conflicts, and legal divisions that play a major role in controversial deadlock and why this issue warrants the attention of scientists, agriculturists, environmentalists, and health advocates. In this review, we highlight the potential toxicities of RAC on aquatic animals to emphasize scientific evidence and reports on the potentially harmful effects of RAC on the aquatic environment and human health.
Assuntos
Ração Animal , Dissidências e Disputas , Humanos , Suínos , Bovinos , Animais , Ração Animal/análise , Fenetilaminas/farmacologia , Agonistas Adrenérgicos beta/farmacologia , AntibacterianosRESUMO
The fin is known to play an important role in swimming for many adult fish, including zebrafish. Zebrafish fins consist of paired pectoral and pelvic with unpaired dorsal, anal, and caudal tail fins with specific functions in fish locomotion. However, there was no study comparing the behavior effects caused by the absence of each fin. We amputated each fin of zebrafish and evaluated their behavior performance in the 3D locomotion test using fractal dimension and entropy analyses. Afterward, the behavior recovery after the tail fin amputation was also evaluated, together with the fin regeneration process to study their relationship. Finally, we conducted a further study to confirm whether the observed behavior alterations were from pain elicited by fin amputation procedure or not by using lidocaine, a pain-relieving drug. Amputation in the caudal fin resulted in the most pronounced behavior alterations, especially in their movement complexity. Furthermore, we also found that their behavior was fully recovered before the caudal fin was fully regenerated, indicating that these behavioral changes were not majorly due to a mechanical change in tail length; instead, they may come from pain elicited from the fin amputation, since treatment with lidocaine could ameliorate the behavioral effects after the amputation procedure. However, lidocaine did not accelerate the behavior recovery process; instead, it caused the fishes to display some slight side effects. This study highlights the potential moderate severity of fin amputation in zebrafish and the importance of analgesia usage. However, side effects may occur and need to be considered since fin amputation is routinely conducted for various research, especially genomic screening.
RESUMO
DeepLabCut (DLC) is a deep learning-based tool initially invented for markerless pose estimation in mammals. In this study, we explored the possibility of adopting this tool for conducting markerless cardiac physiology assessment in an important aquatic toxicology model of zebrafish (Danio rerio). Initially, high-definition videography was applied to capture heartbeat information at a frame rate of 30 frames per second (fps). Next, 20 videos from different individuals were used to perform convolutional neural network training by labeling the heart chamber (ventricle) with eight landmarks. Using Residual Network (ResNet) 152, a neural network with 152 convolutional neural network layers with 500,000 iterations, we successfully obtained a trained model that can track the heart chamber in a real-time manner. Later, we validated DLC performance with the previously published ImageJ Time Series Analysis (TSA) and Kymograph (KYM) methods. We also evaluated DLC performance by challenging experimental animals with ethanol and ponatinib to induce cardiac abnormality and heartbeat irregularity. The results showed that DLC is more accurate than the TSA method in several parameters tested. The DLC-trained model also detected the ventricle of zebrafish embryos even in the occurrence of heart abnormalities, such as pericardial edema. We believe that this tool is beneficial for research studies, especially for cardiac physiology assessment in zebrafish embryos.
RESUMO
Protozoa are eukaryotic, unicellular microorganisms that have an important ecological role, are easy to handle, and grow rapidly, which makes them suitable for ecotoxicity assessment. Previous methods for locomotion tracking in protozoa are largely based on software with the drawback of high cost and/or low operation throughput. This study aimed to develop an automated pipeline to measure the locomotion activity of the ciliated protozoan Tetrahymena thermophila using a machine learning-based software, TRex, to conduct tracking. Behavioral endpoints, including the total distance, velocity, burst movement, angular velocity, meandering, and rotation movement, were derived from the coordinates of individual cells. To validate the utility, we measured the locomotor activity in either the knockout mutant of the dynein subunit DYH7 or under starvation. Significant reduction of locomotion and alteration of behavior was detected in either the dynein mutant or in the starvation condition. We also analyzed how Tetrahymena locomotion was affected by the exposure to copper sulfate and showed that our method indeed can be used to conduct a toxicity assessment in a high-throughput manner. Finally, we performed a principal component analysis and hierarchy clustering to demonstrate that our analysis could potentially differentiate altered behaviors affected by different factors. Taken together, this study offers a robust methodology for Tetrahymena locomotion tracking in a high-throughput manner for the first time.
Assuntos
Dineínas , Tetrahymena thermophila , Análise por Conglomerados , Locomoção , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismoRESUMO
Water fleas are an important lower invertebrate model that are usually used for ecotoxicity studies. Contrary to mammals, the heart of a water flea has a single chamber, which is relatively big in size and with fast-beating properties. Previous cardiac chamber volume measurement methods are primarily based on ImageJ manual counting at systolic and diastolic phases which suffer from low efficiency, high variation, and tedious operation. This study provides an automated and robust pipeline for cardiac chamber size estimation by a deep learning approach. Image segmentation analysis was performed using U-Net and Mask RCNN convolutional networks on several different species of water fleas such as Moina sp., Daphnia magna, and Daphnia pulex. The results show that Mask RCNN performs better than U-Net at the segmentation of water fleas' heart chamber in every parameter tested. The predictive model generated by Mask RCNN was further analyzed with the Cv2.fitEllipse function in OpenCV to perform a cardiac physiology assessment of Daphnia magna after challenging with the herbicide of Roundup. Significant increase in normalized stroke volume, cardiac output, and the shortening fraction was observed after Roundup exposure which suggests the possibility of heart chamber alteration after roundup exposure. Overall, the predictive Mask RCNN model established in this study provides a convenient and robust approach for cardiac chamber size and cardiac physiology measurement in water fleas for the first time. This innovative tool can offer many benefits to other research using water fleas for ecotoxicity studies.
RESUMO
Cardiac arrhythmia has been defined as one of the abnormal heart rhythm symptoms, which is a common problem dealt with by cardiologists. Zebrafish were established as a powerful animal model with a transparent body that enables optical observation to analyze cardiac morphology and cardiac rhythm regularity. Currently, research has observed heart-related parameters in zebrafish, which used different approaches, such as starting from the use of fluorescent transgenic zebrafish, different software, and different observation methods. In this study, we developed an innovative approach by using the OpenCV library to measure zebrafish larvae heart rate and rhythm. The program is designed in Python, with the feature of multiprocessing for simultaneous region-of-interest (ROI) detection, covering both the atrium and ventricle regions in the video, and was designed to be simple and user-friendly, having utility even for users who are unfamiliar with Python. Results were validated with our previously published method using ImageJ, which observes pixel changes. In summary, the results showed good consistency in heart rate-related parameters. In addition, the established method in this study also can be widely applied to other invertebrates (like Daphnia) for cardiac rhythm measurement.
Assuntos
Arritmias Cardíacas/diagnóstico por imagem , Átrios do Coração/diagnóstico por imagem , Ventrículos do Coração/diagnóstico por imagem , Peixe-Zebra/fisiologia , Animais , Arritmias Cardíacas/fisiopatologia , Modelos Animais de Doenças , Átrios do Coração/fisiopatologia , Frequência Cardíaca/fisiologia , Ventrículos do Coração/fisiopatologia , Humanos , Processamento de Imagem Assistida por Computador , Larva/fisiologia , Software , Gravação em VídeoRESUMO
Ractopamine (RAC) is a beta-adrenoceptor agonist that is used to promote lean and increased food conversion efficiency in livestock. This compound has been considered to be causing behavioral and physiological alterations in livestock like pig. Few studies have addressed the potential non-target effect of RAC in aquatic animals. In this study, we aimed to explore the potential physiological response after acute RAC exposure in zebrafish by evaluating multiple endpoints like locomotor activity, oxygen consumption, and cardiovascular performance. Zebrafish larvae were subjected to waterborne RAC exposure at 0.1, 1, 2, 4, or 8 ppm for 24 h, and the corresponding cardiovascular, respiratory, and locomotion activities were monitored and quantified. In addition, we also performed in silico molecular docking for RAC with 10 zebrafish endogenous ß-adrenergic receptors to elucidate the potential acting mechanism of RAC. Results show RAC administration can significantly boost locomotor activity, cardiac performance, oxygen consumption, and blood flow rate, but without affecting the cardiac rhythm regularity in zebrafish embryos. Based on structure-based flexible molecular docking, RAC display similar binding affinity to all ten subtypes of endogenous ß-adrenergic receptors, from adra1aa to adra2db, which are equivalent to the human one. This result suggests RAC might act as high potency and broad spectrum ß-adrenergic receptors agonist on boosting the locomotor activity, cardiac performance, and oxygen consumption in zebrafish. To validate our results, we co-incubated a well-known ß-blocker of propranolol (PROP) with RAC. PROP exposure tends to minimize the locomotor hyperactivity, high oxygen consumption, and cardiac rate in zebrafish larvae. In silico structure-based molecular simulation and binding affinity tests show PROP has an overall lower binding affinity than RAC. Taken together, our studies provide solid in vivo evidence to support that RAC plays crucial roles on modulating cardiovascular, respiratory, and locomotory physiology in zebrafish for the first time. In addition, the versatile functions of RAC as ß-agonist possibly mediated via receptor competition with PROP as ß-antagonist.
Assuntos
Agonistas Adrenérgicos beta/farmacologia , Sistema Cardiovascular/fisiopatologia , Larva/fisiologia , Locomoção , Fenetilaminas/farmacologia , Sistema Respiratório/fisiopatologia , Animais , Sistema Cardiovascular/efeitos dos fármacos , Larva/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , Peixe-ZebraRESUMO
In this paper, we review the effects of large-scale neonicotinoid contaminations in the aquatic environment on non-target aquatic invertebrate and vertebrate species. These aquatic species are the fauna widely exposed to environmental changes and chemical accumulation in bodies of water. Neonicotinoids are insecticides that target the nicotinic type acetylcholine receptors (nAChRs) in the central nervous systems (CNS) and are considered selective neurotoxins for insects. However, studies on their physiologic impacts and interactions with non-target species are limited. In researches dedicated to exploring physiologic and toxic outcomes of neonicotinoids, studies relating to the effects on vertebrate species represent a minority case compared to invertebrate species. For aquatic species, the known effects of neonicotinoids are described in the level of organismal, behavioral, genetic and physiologic toxicities. Toxicological studies were reported based on the environment of bodies of water, temperature, salinity and several other factors. There exists a knowledge gap on the relationship between toxicity outcomes to regulatory risk valuation. It has been a general observation among studies that neonicotinoid insecticides demonstrate significant toxicity to an extensive variety of invertebrates. Comprehensive analysis of data points to a generalization that field-realistic and laboratory exposures could result in different or non-comparable results in some cases. Aquatic invertebrates perform important roles in balancing a healthy ecosystem, thus rapid screening strategies are necessary to verify physiologic and toxicological impacts. So far, much of the studies describing field tests on non-target species are inadequate and in many cases, obsolete. Considering the current literature, this review addresses important information gaps relating to the impacts of neonicotinoids on the environment and spring forward policies, avoiding adverse biological and ecological effects on a range of non-target aquatic species which might further impair the whole of the aquatic ecological web.
Assuntos
Organismos Aquáticos/efeitos dos fármacos , Inseticidas/efeitos adversos , Neonicotinoides/efeitos adversos , Animais , Ecossistema , Hidrobiologia , Inseticidas/farmacologia , Invertebrados/efeitos dos fármacos , Neonicotinoides/farmacologia , Neurotoxinas/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidadeRESUMO
The use of chemicals to boost food production increases as human consumption also increases. The insectidal, nematicidal and acaricidal chemical carbofuran (CAF), is among the highly toxic carbamate pesticide used today. Alongside, copper oxide nanoparticles (CuO) are also used as pesticides due to their broad-spectrum antimicrobial activity. The overuse of these pesticides may lead to leaching into the aquatic environments and could potentially cause adverse effects to aquatic animals. The aim of this study is to assess the effects of carbofuran and copper oxide nanoparticles into the cardiovascular system of zebrafish and unveil the mechanism behind them. We found that a combination of copper oxide nanoparticle and carbofuran increases cardiac edema in zebrafish larvae and disturbs cardiac rhythm of zebrafish. Furthermore, molecular docking data show that carbofuran inhibits acetylcholinesterase (AChE) activity in silico, thus leading to impair cardiac rhythms. Overall, our data suggest that copper oxide nanoparticle and carbofuran combinations work synergistically to enhance toxicity on the cardiovascular performance of zebrafish larvae.
Assuntos
Carbofurano/toxicidade , Inibidores da Colinesterase/toxicidade , Cobre/toxicidade , Coração/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Praguicidas/toxicidade , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Animais , Sítios de Ligação , Carbofurano/farmacologia , Cardiotoxicidade , Sinergismo Farmacológico , Praguicidas/farmacologia , Ligação Proteica , Peixe-ZebraRESUMO
Over the last few years, environmental pollution, especially water pollution, has become a serious issue worldwide. Thus, methods that can help us understand the impact and effects of these pollutants, especially on aquatic animals, are needed. Behavioral assessment has emerged as a crucial tool in toxicology and pharmacology because many studies have shown, in multiple animal models, that various pharmacological compounds can alter behavior, with many of the findings being translatable to humans. Moreover, behavior study can also be used as a suitable indicator in the ecotoxicological risk assessment of pollutants. Several model organisms, especially rodent models, have been extensively employed for behavior studies. However, assessments using this model are generally time consuming, expensive, and require extensive facilities for housing experimental animals. Moreover, behavioral studies typically use different measurements and assessment tools, making comparisons difficult. In addition, even though behavioral phenomics has the potential to comprehensively illustrate the toxicities of chemicals, there is only a limited number of studies focusing on animal behavior using such a global approach. Here, we describe a phenomics approach that can be used to investigate the impact of pollutants using zebrafish. The approach consists of several behavioral tests, including response to a novel environment, mirror-reflection image, predator fish, and conspecifics, after exposure to a test chemical. Phenotype fingerprinting, a method for summarizing individual phenotypes based on the results of the behavioral tests, is then conducted to reduce data complexity and display the pattern of each compound on behavioral phenotypes in zebrafish. This approach may be useful to researchers studying the potential adverse effects of different pollutants. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Novel tank test Basic Protocol 2: Shoaling test Basic Protocol 3: Aggression test (mirror biting test) Basic Protocol 4: Social interaction test Basic Protocol 5: Fear response test Basic Protocol 6: PCA and heatmap clustering.
Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Comportamento Animal , Ecotoxicologia , Fenômica , Poluentes Químicos da Água/toxicidadeRESUMO
Tail coiling is a reflection response in fish embryos that can be used as a model for neurotoxic analysis. The previous method to analyze fish tail coiling is largely based on third-party software. In this study, we aim to develop a simple and cost-effective method called TCMacro by using ImageJ macro to reduce the operational complexity. The basic principle of the current method is based on the dynamic change of pixel intensity in the region of interest (ROI). When the fish tail is moving, the average intensity is increasing. In time when the fish freeze, the peak of mean intensity is maintaining at a relatively low level. By using the optimized macro settings and excel VBA scripts, all the tail coiling measurement processes can be archived with few operation steps with high precision. Three major endpoints of tail coiling counts, tail coiling duration and tail coiling intervals can be obtained in batch. To validate this established method, we tested the potential neurotoxic activity of Tricaine (methanesulfonate, MS-222) and psychoactive compound of caffeine. Zebrafish embryos after Tricaine exposure displayed significantly less tail coiling activity in a dose-dependent manner, and were comparable to manual counting through the Wilcoxon test and Pearson correlation double validation. Zebrafish embryos after caffeine exposure displayed significantly high tail coiling activity. In conclusion, the TCMacro method presented in this study provides a simple and robust method that is able to measure the relative tail coiling activities in zebrafish embryos in a high-throughput manner.
Assuntos
Cafeína/farmacologia , Diagnóstico por Imagem/métodos , Psicotrópicos/farmacologia , Software , Cauda/efeitos dos fármacos , Aminobenzoatos/farmacologia , Animais , Benchmarking , Relação Dose-Resposta a Droga , Embrião não Mamífero , Ensaios de Triagem em Larga Escala , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Movimento/efeitos dos fármacos , Movimento/fisiologia , Cauda/fisiologia , Peixe-ZebraRESUMO
Artificial sweeteners are widely used food ingredients in beverages and drinks to lower calorie intake which in turn helps prevent lifestyle diseases such as obesity. However, as their popularity has increased, the release of artificial sweetener to the aquatic environment has also increased at a tremendous rate. Thus, our study aims to systematically explore the potential cardiovascular physiology alterations caused by eight commercial artificial sweeteners, including acesulfame-K, alitame, aspartame, sodium cyclamate, dulcin, neotame, saccharine and sucralose, at the highest environmentally relevant concentration on cardiovascular performance using zebrafish (Danio rerio) as a model system. Embryonic zebrafish were exposed to the eight artificial sweeteners at 100 ppb and their cardiovascular performance (heart rate, ejection fraction, fractional shortening, stroke volume, cardiac output, heartbeat variability, and blood flow velocity) was measured and compared. Overall, our finding supports the safety of artificial sweetener exposure. However, several finding like a significant increase in the heart rate and heart rate variability after incubation in several artificial sweeteners are noteworthy. Biomarker testing also revealed that saccharine significantly increase the dopamine level in zebrafish larvae, which is might be the reason for the cardiac physiology changes observed after saccharine exposure.
RESUMO
Recently, medaka has been used as a model organism in various research fields. However, even though it possesses several advantages over zebrafish, fewer studies were done in medaka compared to zebrafish, especially with regard to its behavior. Thus, to provide more information regarding its behavior and to demonstrate the behavioral differences between several species of medaka, we compared the behavioral performance and biomarker expression in the brain between four medaka fishes, Oryzias latipes, Oryzias dancena, Oryzias woworae, and Oryzias sinensis. We found that each medaka species explicitly exhibited different behaviors to each other, which might be related to the different basal levels of several biomarkers. Furthermore, by phenomics and genomic-based clustering, the differences between these medaka fishes were further investigated. Here, the phenomic-based clustering was based on the behavior results, while the genomic-based clustering was based on the sequence of the nd2 gene. As we expected, both clusterings showed some resemblances to each other in terms of the interspecies relationship between medaka and zebrafish. However, this similarity was not displayed by both clusterings in the medaka interspecies comparisons. Therefore, these results suggest a re-interpretation of several prior studies in comparative biology. We hope that these results contribute to the growing database of medaka fish phenotypes and provide one of the foundations for future phenomics studies of medaka fish.
Assuntos
Comportamento Animal/fisiologia , Encéfalo/enzimologia , Proteínas de Peixes , Regulação Enzimológica da Expressão Gênica/fisiologia , NADH Desidrogenase , Oryzias , Animais , Proteínas de Peixes/biossíntese , Proteínas de Peixes/genética , NADH Desidrogenase/biossíntese , NADH Desidrogenase/genética , Oryzias/genética , Oryzias/metabolismo , Especificidade da EspécieRESUMO
As a nicotinoid neurotoxic insecticide, imidacloprid (IMI) works by disrupting nerve transmission via nicotinic acetylcholine receptor (nAChR). Although IMI is specifically targeting insects, nontarget animals such as the freshwater shrimp, Neocaridina denticulata, could also be affected, thus causing adverse effects on the aquatic environment. To investigate IMI toxicity on nontarget organisms like N. denticulata, their physiology (locomotor activity, heartbeat, and gill ventilation) and biochemical factors (oxidative stress, energy metabolism) after IMI exposure were examined. IMI exposure at various concentrations (0.03125, 0.0625, 0.125, 0.25, 0.5, and 1 ppm) to shrimp after 24, 48, 72 h led to dramatic reduction of locomotor activity even at low concentrations. Meanwhile, IMI exposure after 92 h caused reduced heartbeat and gill ventilation at high concentrations. Biochemical assays were performed to investigate oxidative stress and energy metabolism. Interestingly, locomotion immobilization and cardiac activity were rescued after acetylcholine administration. Through molecular docking, IMI demonstrated high binding affinity to nAChR. Thus, locomotor activity and heartbeat in shrimp after IMI exposure may be caused by nAChR blockade and not alterations caused by oxidative stress and energy metabolism. To summarize, N. denticulata serves as an excellent and sensitive aquatic invertebrate model to conduct pesticide toxicity assays that encompass physiologic and biochemical examinations.
RESUMO
Graphene (GR) and graphene oxide (GO) are widely being used as promising candidates for biomedical applications, as well as for bio-sensing, drug delivery, and anticancer therapy. However, their undesirable side effects make it necessary to assess further the toxicity and safety of using these materials. The main objective of the current study was to investigate the toxicities of GR and GO in predicted environmental relevant concentrations in adult zebrafish (Danio rerio), particularly on their behaviors, and conducted biochemical assays to elucidate the possible mechanism that underlies their toxicities. Zebrafish was chronically (â¼14 days) exposed to two different doses of GR (0.1 and 0.5 ppm) or GO (0.1 and 1 ppm). At 14 ± 1 days, a battery of behavioral tests was conducted, followed by enzyme-linked immunosorbent assays (ELISA) test on the following day to inspect the alterations in antioxidant activity, oxidative stress, and neurotransmitters in the treated zebrafish brain. An alteration in predator avoidance behavior was observed in all treated groups, while GR-treated fish exhibited abnormal exploratory behavior. Furthermore, altered locomotor activity was displayed by most of the treated groups, except for the high concentration of the GR group. From the ELISA results, we discovered a high concentration of GR exposure significantly decreased several neurotransmitters and cortisol levels. Meanwhile, elevated reactive oxygen species (ROS) were displayed by the group treated with low and high doses of GR and GO, respectively. These significant changes would possibly affect zebrafish behaviors and might suggest the potential toxicity from GR and GO exposures. To sum up, the present study presented new evidence for the effects of GR and GO in zebrafish behavioral dysregulation. We hope these assessments can contribute to our understanding of graphene and graphene oxide biosafety.
Assuntos
Grafite , Peixe-Zebra , Animais , Grafite/toxicidade , Estresse Oxidativo , Fenômica , Espécies Reativas de OxigênioRESUMO
Donepezil (DPZ) is an acetylcholinesterase inhibitor used for the clinical treatment of mild cognitive impairment. However, DPZ has been reported to have adverse effects, including causing abnormal cardiac rhythm, insomnia, vomiting, and muscle cramps. However, the existence of these effects in subjects without Dementia is unknown. In this study, we use zebrafish to conduct a deeper analysis of the potential adverse effects of DPZ on the short-term memory and behaviors of normal zebrafish by performing multiple behavioral and biochemical assays. Adult zebrafish were exposed to 1 ppm and 2.5 ppm of DPZ. From the results, DPZ caused a slight improvement in the short-term memory of zebrafish and induced significant elevation in aggressiveness, while the novel tank and shoaling tests revealed anxiolytic-like behavior to be caused by DPZ. Furthermore, zebrafish circadian locomotor activity displayed a higher reduction of locomotion and abnormal movement orientation in both low- and high-dose groups, compared to the control group. Biomarker assays revealed that these alterations were associated with an elevation of oxytocin and a reduction of cortisol levels in the brain. Moreover, the significant increases in reactive oxygen species (ROS) and malondialdehyde (MDA) levels in muscle tissue suggest DPZ exposure induced muscle tissue oxidative stress and muscle weakness, which may underlie the locomotor activity impairment. In conclusion, we show, for the first time, that chronic waterborne exposure to DPZ can severely induce adverse effects on normal zebrafish in a dose-dependent manner. These unexpected adverse effects on behavioral alteration should be carefully addressed in future studies considering DPZ conducted on zebrafish or other animals.
Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Donepezila/toxicidade , Exposição Ambiental/efeitos adversos , Testes de Toxicidade Crônica/métodos , Peixe-Zebra/fisiologia , Animais , Encéfalo/metabolismo , Inibidores da Colinesterase/toxicidade , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Malondialdeído/metabolismo , Memória de Curto Prazo/efeitos dos fármacos , Memória de Curto Prazo/fisiologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Músculos/efeitos dos fármacos , Músculos/metabolismo , Músculos/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismoRESUMO
The heart is the most important muscular organ of the cardiovascular system, which pumps blood and circulates, supplying oxygen and nutrients to peripheral tissues. Zebrafish have been widely explored in cardiotoxicity research. For example, the zebrafish embryo has been used as a human heart model due to its body transparency, surviving several days without circulation, and facilitating mutant identification to recapitulate human diseases. On the other hand, adult zebrafish can exhibit the amazing regenerative heart muscle capacity, while adult mammalian hearts lack this potential. This review paper offers a brief description of the major methodologies used to detect zebrafish cardiac rhythm at both embryonic and adult stages. The dynamic pixel change method was mostly performed for the embryonic stage. Other techniques, such as kymography, laser confocal microscopy, artificial intelligence, and electrocardiography (ECG) have also been applied to study heartbeat in zebrafish embryos. Nevertheless, ECG is widely used for heartbeat detection in adult zebrafish since ECG waveforms' similarity between zebrafish and humans is prominent. High-frequency ultrasound imaging (echocardiography) and modern electronic sensor tag also have been proposed. Despite the fact that each method has its benefits and limitations, it is proved that zebrafish have become a promising animal model for human cardiovascular disease, drug pharmaceutical, and toxicological research. Using those tools, we conclude that zebrafish behaviors as an excellent small animal model to perform real-time monitoring for the developmental heart process with transparent body appearance, to conduct the in vivo cardiovascular performance and gene function assays, as well as to perform high-throughput/high content drug screening.
RESUMO
Common solvents are frequently used as carriers to dissolve chemicals with a hydrophobic property that is extensively applied in the industrial and biomedical fields. In this study, we aimed to systematically study the sub-chronic effect of ten common solvents at low concentration exposure in adult zebrafish and perform neurobehavioral assessments for mechanistic exploration. After exposed to ten common solvents, including methanol, ethanol (EtOH), dimethyl sulfoxide (DMSO), isopropanol, acetone, polyethylene glycol-400 (PEG-400), glycerol, butanol, pentane, and tetrahydrofuran for continuous 10 day at 0.1% concentration level, adult zebrafish were subjected to perform a serial of behavioral tests, such as novel tank, mirror biting, predator avoidance, social interaction and shoaling. Later, 20 behavioral endpoints obtained from these five tests were transformed into a scoring matrix. Principal component analysis (PCA) and hierarchy clustering were performed to evaluate and compare the zebrafish behavior profiling. By using this phenomic approach, we were able to systematically evaluate the toxicity of the common solvents in zebrafish at a neurobehavioral level for the first time and found each common solvent-induced unique behavioral alteration to produce fingerprint-like patterns in hierarchy clustering and heatmap analysis. Among all tested common solvents, acetone and PEG-400 displayed better biocompatibility and less toxicity since they triggered less behavioral and biochemical alterations while methanol and DMSO caused severe behavior alterations in zebrafish after chronic exposure of these solvents. We conclude the behavioral phenomic approach conducted in this study providing a powerful tool to a systematical exploration of the common solvent toxicity at the whole organism level.
Assuntos
Fenômica , Peixe-Zebra , Acetona , Animais , Dimetil Sulfóxido , SolventesRESUMO
Pesticides are widely used to eradicate insects, weed species, and fungi in agriculture. The half-lives of some pesticides are relatively long and may have the dire potential to induce adverse effects when released into the soil, terrestrial and aquatic systems. To assess the potential adverse effects of pesticide pollution in the aquatic environment, zebrafish (Danio rerio) and Daphnia magna are two excellent animal models because of their transparent bodies, relatively short development processes, and well-established genetic information. Moreover, they are also suitable for performing high-throughput toxicity assays. In this study, we used both zebrafish larvae and water flea daphnia neonates as a model system to explore and compare the potential toxicity by monitoring locomotor activity. Tested animals were exposed to 12 various types of pesticides (three fungicides and 9 insecticides) for 24 h and their corresponding locomotor activities, in terms of distance traveled, burst movement, and rotation were quantified. By adapting principal component analysis (PCA) and hierarchical clustering analysis, we were able to minimize data complexity and compare pesticide toxicity based on locomotor activity for zebrafish and daphnia. Results showed distinct locomotor activity alteration patterns between zebrafish and daphnia towards pesticide exposure. The majority of pesticides tested in this study induced locomotor hypo-activity in daphnia neonates but triggered locomotor hyper-activity in zebrafish larvae. According to our PCA and clustering results, the toxicity for 12 pesticides was grouped into two major groups based on all locomotor activity endpoints collected from both zebrafish and daphnia. In conclusion, all pesticides resulted in swimming alterations in both animal models by either producing hypo-activity, hyperactivity, or other changes in swimming patterns. In addition, zebrafish and daphnia displayed distinct sensitivity and response against different pesticides, and the combinational analysis approach by using a phenomic approach to combine data collected from zebrafish and daphnia provided better resolution for toxicological assessment.