Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Food Chem ; 463(Pt 2): 141183, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39278075

RESUMO

Lycopene, a biologically active phytochemical with health benefits, is a key quality indicator for cherry tomatoes. While ultraviolet/visible/near-infrared (UV/Vis/NIR) spectroscopy holds promise for large-scale online lycopene detection, capturing its characteristic signals is challenging due to the low lycopene concentration in cherry tomatoes. This study improved the prediction accuracy of lycopene by supplementing spectral data with image information through spectral feature enhancement and spectra-image fusion. The feasibility of using UV/Vis/NIR spectra and image features to predict lycopene content was validated. By enhancing spectral bands corresponding to colors correlated with lycopene, the performance of the spectral model was improved. Additionally, direct spectra-image fusion further enhanced the prediction accuracy, achieving RP2, RMSEP, and RPD as 0.95, 8.96 mg/kg, and 4.25, respectively. Overall, this research offers valuable insights into supplementing spectral data with image information to improve the accuracy of non-destructive lycopene detection, providing practical implications for online fruit quality prediction.

2.
Adv Mater ; : e2409292, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39221668

RESUMO

Gas-evolving reactions (GERs) are important in many electrochemical energy conversion technologies and chemical industries. The operation of GERs at high current densities is critical for their industrial implementation but remains challenging as it poses stringent requirements on the electrodes in terms of reaction kinetics, mass transfer, and electron transport. Here the general and rational design of self-standing carbon electrodes with vertically aligned porous channels, appropriate pore size distribution, and high surface area as supports for loading a variety of catalytic species by facile electrodeposition are reported. These electrodes simultaneously possess high intrinsic activity, large numbers of active sites, and efficient transport highways for ions, gases, and electrons, resulting in significant performance improvements at high current densities in diverse GERs such as urea oxidation, hydrogen evolution, and oxygen evolution reactions, as well as overall urea/water electrolyzers. As an example, the carbon electrode decorated with Ni(OH)2 demonstrates a record-high current density of 1000 mA cm-2 at 1.360 V versus the reversible hydrogen electrode, largely outperforming the conventional nickel foam-based counterpart and the state-of-the-art electrodes.

3.
Vet Med Sci ; 10(5): e1583, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39158971

RESUMO

Alpha-fetoprotein (AFP) is a structural serum glycoprotein that plays vital roles in reproduction and mammalian development. Analysis of serum prolactin (PRL) is considered one of the useful methods for diagnosing pregnancy in Asian elephants. However, the expression profiles of AFP in pregnant and nonpregnant Asian elephants remain unclear, nor is the relationship with PRL. In this study, serum seven gonadal hormones and AFP in three pregnant and seven nonpregnant Asian elephants were analysed by via radioimmunoassay (RIA) and enzyme-linked immunosorbent (ELISA) assay. We found that the mean (±SD) concentration of prolactin (PRL) in pregnant (136.782 ± 30.987 ng/mL) elephants was significantly higher than that in nonpregnant elephants (52.803 ± 21.070 ng/mL; p ≤ 0.0005). The mean (±SD) concentration of AFP in pregnant elephants (11.598 ± 0.824 ng/mL) was significantly higher than that in nonpregnant elephants (7.200 ± 2.283 ng/mL; p ≤ 0.05). Furthermore, the AFP concentration was positively correlated with the PRL concentration in the 10 Asian elephants studied. In conclusion, our findings suggest that serum AFP concentration is a potential biomarker of pregnancy outcomes in Asian elephants.


Assuntos
Biomarcadores , Elefantes , Resultado da Gravidez , alfa-Fetoproteínas , Animais , Feminino , Gravidez , alfa-Fetoproteínas/análise , alfa-Fetoproteínas/metabolismo , Elefantes/sangue , Elefantes/fisiologia , Biomarcadores/sangue , Resultado da Gravidez/veterinária , Prenhez/sangue , Prolactina/sangue
4.
Stem Cell Reports ; 19(8): 1122-1136, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39094561

RESUMO

Reactive astrocytes are known to exert detrimental effects upon neurons in several neurodegenerative diseases, yet our understanding of how astrocytes promote neurotoxicity remains incomplete, especially in human systems. In this study, we leveraged human pluripotent stem cell (hPSC) models to examine how reactivity alters astrocyte function and mediates neurodegeneration. hPSC-derived astrocytes were induced to a reactive phenotype, at which point they exhibited a hypertrophic profile and increased complement C3 expression. Functionally, reactive astrocytes displayed decreased intracellular calcium, elevated phagocytic capacity, and decreased contribution to the blood-brain barrier. Subsequently, co-culture of reactive astrocytes with a variety of neuronal cell types promoted morphological and functional alterations. Furthermore, when reactivity was induced in astrocytes from patient-specific hPSCs (glaucoma, Alzheimer's disease, and amyotrophic lateral sclerosis), the reactive state exacerbated astrocytic disease-associated phenotypes. These results demonstrate how reactive astrocytes modulate neurodegeneration, significantly contributing to our understanding of a role for reactive astrocytes in neurodegenerative diseases.


Assuntos
Astrócitos , Técnicas de Cocultura , Células-Tronco Pluripotentes , Astrócitos/metabolismo , Humanos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Complemento C3/metabolismo , Diferenciação Celular , Neurônios/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Fagocitose , Barreira Hematoencefálica/metabolismo , Glaucoma/patologia , Glaucoma/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Cálcio/metabolismo , Fenótipo
5.
Heliyon ; 10(14): e34181, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39100475

RESUMO

Enhancing cardiomyocyte proliferation is essential to reverse or slow down the heart failure progression in many cardiovascular diseases such as myocardial infarction (MI). Long non-coding RNAs (lncRNAs) have been reported to regulate cardiomyocyte proliferation. In particular, lncRNA urothelial carcinoma-associated 1 (lncUCA1) played multiple roles in regulating cell cycle progression and cardiovascular diseases, making lncUCA1 a potential target for promoting cardiomyocyte proliferation. However, the role of lncUCA1 in cardiomyocyte proliferation remains unknown. This study aimed at exploring the function and underlying molecular mechanism of lncUCA1 in cardiomyocyte proliferation. Quantitative RT-PCR showed that lncUCA1 expression decreased in postnatal hearts. Gain-and-loss-of-function experiments showed that lncUCA1 positively regulated cardiomyocyte proliferation in vitro and in vivo. The bioinformatics program identified miR-128 as a potential target of lncUCA1, and loss of miR-128 was reported to promote cardiomyocyte proliferation by inhibiting the SUZ12/P27 pathway. Luciferase reporter assay, qRT-PCR, western blotting, and immunostaining experiments further revealed that lncUCA1 acted as a ceRNA of miR-128 to upregulate its target SUZ12 and downregulate P27, thereby increasing cyclin B1, cyclin E, CDK1 and CDK2 expression to promote cardiomyocyte proliferation. In conclusion, upregulation of lncRNA UCA1 promoted cardiomyocyte proliferation by inhibiting the miR-128/SUZ12/P27 pathway. Our results indicated that lncUCA1 might be a new therapeutic target for stimulating cardiomyocyte proliferation.

6.
Langmuir ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39024040

RESUMO

Given the limitations of micromechanical experiments and molecular dynamics simulations, the normal compression process of clay aggregates was simulated under different vertical pressures (P), numbers of particles, loading methods, and environments by a Gay-Berne potential model. On the basis of the variations of particle orientation and the distribution of stacks, the evolution of deformation and stresses was elucidated. The results showed that the effects of the pressure level and loading environment on the deformation were significant. In the range of 0.1-10 MPa, the changes in the void ratio were essentially the evolution of the distribution of stacks determined by attractive short-range van der Waals interactions. The deformation under constant pressure was larger than that under step loading. Because the interactions between clay particles were mainly controlled by mechanical force when in the range of 40-100 MPa, the void ratios under various loading conditions were consistent. It was also found that changes in three-dimensional stresses during compression were dependent on those of the distribution of stacks. In the vacuum environment, owing to the lateral movement of interlocked small stacks, the horizontal stress decreased. The lateral pressure coefficients (k) were greater in an atmospheric environment because the anisotropic particle orientation was relatively less obvious. In the range of 10-100 MPa, when the loading path became longer, k was similar in vacuum but became smaller in an atmosphere. If the initial loading pressure was increased, the number of large stacks sharply increased and the anisotropy was significant in a vacuum environment, which was less prone to lateral expansion. In contrast, more consistent particle arrangements were maintained in an atmosphere. This work will be conducive to explaining experimental observations of long-term ripening.

7.
Nat Commun ; 15(1): 6215, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043664

RESUMO

Integrating genomics and histology for cancer prognosis demonstrates promise. Here, we develop a multi-classifier system integrating a lncRNA-based classifier, a deep learning whole-slide-image-based classifier, and a clinicopathological classifier to accurately predict post-surgery localized (stage I-III) papillary renal cell carcinoma (pRCC) recurrence. The multi-classifier system demonstrates significantly higher predictive accuracy for recurrence-free survival (RFS) compared to the three single classifiers alone in the training set and in both validation sets (C-index 0.831-0.858 vs. 0.642-0.777, p < 0.05). The RFS in our multi-classifier-defined high-risk stage I/II and grade 1/2 groups is significantly worse than in the low-risk stage III and grade 3/4 groups (p < 0.05). Our multi-classifier system is a practical and reliable predictor for recurrence of localized pRCC after surgery that can be used with the current staging system to more accurately predict disease course and inform strategies for individualized adjuvant therapy.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Recidiva Local de Neoplasia , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/cirurgia , Masculino , Feminino , Recidiva Local de Neoplasia/genética , Pessoa de Meia-Idade , Idoso , Prognóstico , Genômica/métodos , Adulto , Estadiamento de Neoplasias , Aprendizado Profundo , Intervalo Livre de Doença
8.
Discov Oncol ; 15(1): 319, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080192

RESUMO

Due to the cancer therapy-related cardiovascular toxicity, heart failure following cancer therapy has a significant mortality rate. Gene-targeted therapy promotes the re-entry of existing cardiomyocytes into the cell cycle to achieve myocardial regeneration, which is a promising strategy for preventing and treating heart failure after myocardial infarction. Circular RNAs (circRNAs) are considered as potential targets for myocardial regeneration due to their strong stability, resistance to degradation, and potential role in heart development and cardiovascular diseases. By comparing the myocardial tissue of mice in the sham operation group and the Doxorubicin therapy group (DOX), we observed a significant decrease in Cirsorbs expression in the DOX group. Cirsorbs was predominantly localized in cardiomyocytes and exhibited high conservation. Subsequent investigations revealed that Cirsorbs could promote myocardial proliferation and inhibit myocardial apoptosis. Mechanistic studies further demonstrated that Cirsorbs could bind to miR99 and reduce its expression level. Meanwhile, miR99 was found to bind to GATA4 mRNA and decrease its expression level. The binding of Cirsorbs to miR99 alleviated the repression of miR99, thereby enhancing GATA4 expression and the transcription of downstream cyclin A2 and cyclin E1. This, in turn, increased cardiomyocyte proliferation and reduced apoptosis. In conclusion, Cirsorbs holds promise as an effective target for myocardial regeneration in reducing cancer therapy-related cardiovascular toxicity.

9.
Nat Commun ; 15(1): 5139, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886388

RESUMO

Although it is well documented that mountains tend to exhibit high biodiversity, how geological processes affect the assemblage of montane floras is a matter of ongoing research. Here, we explore landform-specific differences among montane floras based on a dataset comprising 17,576 angiosperm species representing 140 Chinese mountain floras, which we define as the collection of all angiosperm species growing on a specific mountain. Our results show that igneous bedrock (granitic and karst-granitic landforms) is correlated with higher species richness and phylogenetic overdispersion, while the opposite is true for sedimentary bedrock (karst, Danxia, and desert landforms), which is correlated with phylogenetic clustering. Furthermore, we show that landform type was the primary determinant of the assembly of evolutionarily older species within floras, while climate was a greater determinant for younger species. Our study indicates that landform type not only affects montane species richness, but also contributes to the composition of montane floras. To explain the assembly and differentiation of mountain floras, we propose the 'floristic geo-lithology hypothesis', which highlights the role of bedrock and landform processes in montane floristic assembly and provides insights for future research on speciation, migration, and biodiversity in montane regions.


Assuntos
Biodiversidade , Magnoliopsida , Filogenia , China , Magnoliopsida/crescimento & desenvolvimento , Altitude , Fenômenos Geológicos , Ecossistema
10.
Proc Natl Acad Sci U S A ; 121(25): e2317285121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38870053

RESUMO

Human pluripotent stem cell (hPSC)-derived retinal organoids are three-dimensional cellular aggregates that differentiate and self-organize to closely mimic the spatial and temporal patterning of the developing human retina. Retinal organoid models serve as reliable tools for studying human retinogenesis, yet limitations in the efficiency and reproducibility of current retinal organoid differentiation protocols have reduced the use of these models for more high-throughput applications such as disease modeling and drug screening. To address these shortcomings, the current study aimed to standardize prior differentiation protocols to yield a highly reproducible and efficient method for generating retinal organoids. Results demonstrated that through regulation of organoid size and shape using quick reaggregation methods, retinal organoids were highly reproducible compared to more traditional methods. Additionally, the timed activation of BMP signaling within developing cells generated pure populations of retinal organoids at 100% efficiency from multiple widely used cell lines, with the default forebrain fate resulting from the inhibition of BMP signaling. Furthermore, given the ability to direct retinal or forebrain fates at complete purity, mRNA-seq analyses were then utilized to identify some of the earliest transcriptional changes that occur during the specification of these two lineages from a common progenitor. These improved methods also yielded retinal organoids with expedited differentiation timelines when compared to traditional methods. Taken together, the results of this study demonstrate the development of a highly reproducible and minimally variable method for generating retinal organoids suitable for analyzing the earliest stages of human retinal cell fate specification.


Assuntos
Diferenciação Celular , Organoides , Células-Tronco Pluripotentes , Retina , Humanos , Organoides/citologia , Organoides/metabolismo , Retina/citologia , Retina/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Transdução de Sinais , Reprodutibilidade dos Testes , Proteínas Morfogenéticas Ósseas/metabolismo
11.
Small ; : e2403465, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940376

RESUMO

In pursuit of sustainable agricultural production, the development of environmentally friendly and effective biopesticides is essential to improve food security and environmental sustainability. Bacteriophages, as emerging biocontrol agents, offer an alternative to conventional antibiotics and synthetic chemical pesticides. The primary challenges in applying phage-based biopesticides in agricultural settings are their inherent fragility and low biocidal efficacy, particularly the susceptibility to sunlight exposure. This study addresses the aforementioned challenges by innovatively encapsulating phages in sporopollenin exine capsules (SECs), which are derived from plant pollen grains. The size of the apertures on SECs could be controlled through a non-thermal and rapid process, combining reinflation and vacuum infusion techniques. This unique feature facilitates the high-efficiency encapsulation and controlled release of phages under various conditions. The proposed SECs could encapsulate over 9 log PFU g-1 of phages and significantly enhance the ultraviolet (UV) resistance of phages, thereby ensuring their enhanced survivability and antimicrobial efficacy. The effectiveness of SECs encapsulated phages (T7@SECs) in preventing and treating bacterial contamination on lettuce leaves is further demonstrated, highlighting the practical applicability of this novel biopesticide in field applications. Overall, this study exploits the potential of SECs in the development of phage-based biopesticides, presenting a promising strategy to enhancing agricultural sustainability.

12.
Langmuir ; 40(25): 13236-13246, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38864376

RESUMO

A biocompatible and antifouling polymeric medical coating was developed through rational design for anchoring pendant groups for the modification of stainless steel. Zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) was copolymerized individually with three anchoring monomers of carboxyl acrylamides with different alkyl spacers, including acryloylglycine (2-AE), 6-acrylamidohexanoic acid (6-AH), and 11-acrylamidoundecanoic acid (11-AU). The carboxylic acid groups are responsible for the stable grafting of copolymers onto stainless steel via a coordinative interaction with metal oxides. Due to hydrophobic interaction and hydrogen bonding, the anchoring monomers enable the formation of self-assembling structures in solution and at a metallic interface, which can play an important role in the thin film formation and functionality of the coatings. Therefore, surface characterizations of anchoring monomers on stainless steel were conducted to analyze the packing density and strength of the intermolecular hydrogen bonds. The corresponding copolymers were synthesized, and their aggregate structures were assessed, showing micelle aggregation for copolymers with higher hydrophobic compositions. The synergistic effects of inter/intramolecular interactions and hydrophobicity of the anchoring monomers result in the diversity of the thickness, surface coverage, wettability, and friction of the polymeric coatings on stainless steel. More importantly, the antifouling properties of the coatings against bacteria and proteins were strongly correlated to thin film formation. Ultimately, the key lies in deciphering the molecular structure of the anchoring pendants in thin film formation and assessing the effectiveness of the coatings, which led to the development of medical coatings through the graft-onto approach.

13.
Curr Atheroscler Rep ; 26(8): 383-394, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878139

RESUMO

PURPOSE OF REVIEW: The primary objective of this review is to explore the pathophysiological roles and clinical implications of lipoprotein(a) [Lp(a)] in the context of atherosclerotic cardiovascular disease (ASCVD). We seek to understand how Lp(a) contributes to inflammation and arteriosclerosis, aiming to provide new insights into the mechanisms of ASCVD progression. RECENT FINDINGS: Recent research highlights Lp(a) as an independent risk factor for ASCVD. Studies show that Lp(a) not only promotes the inflammatory processes but also interacts with various cellular components, leading to endothelial dysfunction and smooth muscle cell proliferation. The dual role of Lp(a) in both instigating and, under certain conditions, mitigating inflammation is particularly noteworthy. This review finds that Lp(a) plays a complex role in the development of ASCVD through its involvement in inflammatory pathways. The interplay between Lp(a) levels and inflammatory responses highlights its potential as a target for therapeutic intervention. These insights could pave the way for novel approaches in managing and preventing ASCVD, urging further investigation into Lp(a) as a therapeutic target.


Assuntos
Aterosclerose , Inflamação , Lipoproteína(a) , Humanos , Lipoproteína(a)/metabolismo , Lipoproteína(a)/sangue , Aterosclerose/metabolismo , Aterosclerose/imunologia , Inflamação/metabolismo , Animais , Fatores de Risco
14.
Adv Mater ; 36(32): e2304867, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837502

RESUMO

A disordered crystal structure is an asymmetrical atomic lattice resulting from the missing atoms (vacancies) or the lattice misarrangement in a solid-state material. It has been widely proven to improve the electrocatalytic hydrogen evolution reaction (HER) process. In the present work, due to the special physical properties (the low evaporation temperature of below 900 °C), Zn is utilized as a sacrificial component to create senary PtIrNiCoFeZn high-entropy alloy (HEA) with highly disordered lattices. The structure of the lattice-disordered PtIrNiCoFeZn HEA is characterized by the thermal diffusion scattering (TDS) in transmission electron microscope. Density functional theory calculations reveal that lattice disorder not only accelerates both the Volmer step and Tafel step during the HER process but also optimizes the intensity and distribution of projected density of states near the Fermi energy after the H2O and H adsorption. Anomalously high alkaline HER activity and stability are proven by experimental measurements. This work introduces a novel approach to preparing irregular lattices offering highly efficient HEA and a TDS characterization method to reveal the disordered lattice in materials. It provides a new route toward exploring and developing the catalytic activities of materials with asymmetrically disordered lattices.

15.
Proc Natl Acad Sci U S A ; 121(22): e2319880121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768353

RESUMO

Elevated interstitial fluid pressure (IFP) within pathological tissues (e.g., tumors, obstructed kidneys, and cirrhotic livers) creates a significant hindrance to the transport of nanomedicine, ultimately impairing the therapeutic efficiency. Among these tissues, solid tumors present the most challenging scenario. While several strategies through reducing tumor IFP have been devised to enhance nanoparticle delivery, few approaches focus on modulating the intrinsic properties of nanoparticles to effectively counteract IFP during extravasation and penetration, which are precisely the stages obstructed by elevated IFP. Herein, we propose an innovative solution by engineering nanoparticles with a fusiform shape of high curvature, enabling efficient surmounting of IFP barriers during extravasation and penetration within tumor tissues. Through experimental and theoretical analyses, we demonstrate that the elongated nanoparticles with the highest mean curvature outperform spherical and rod-shaped counterparts against elevated IFP, leading to superior intratumoral accumulation and antitumor efficacy. Super-resolution microscopy and molecular dynamics simulations uncover the underlying mechanisms in which the high curvature contributes to diminished drag force in surmounting high-pressure differentials during extravasation. Simultaneously, the facilitated rotational movement augments the hopping frequency during penetration. This study effectively addresses the limitations posed by high-pressure impediments, uncovers the mutual interactions between the physical properties of NPs and their environment, and presents a promising avenue for advancing cancer treatment through nanomedicine.


Assuntos
Sistemas de Liberação de Medicamentos , Líquido Extracelular , Nanopartículas , Pressão , Nanopartículas/química , Líquido Extracelular/metabolismo , Animais , Sistemas de Liberação de Medicamentos/métodos , Camundongos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Linhagem Celular Tumoral , Extravasamento de Materiais Terapêuticos e Diagnósticos , Simulação de Dinâmica Molecular , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Antineoplásicos/química
17.
PLoS One ; 19(5): e0303909, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38814950

RESUMO

The ADAMTS Like 2 (ADAMTSL2) mutation has been identified to be associated with different human genetic diseases. The role of ADAMTSL2 is unclear in colorectal cancer (CRC). The study investigated the expression of ADAMTSL2 in both pan cancer and CRC, using data from The Cancer Genome Atlas (TCGA) database to assess its diagnostic value. The study examined the correlation between ADAMTSL2 expression levels and clinical characteristics, as well as prognosis in CRC. The study explored potential regulatory networks involving ADAMTSL2, including its association with immune infiltration, immune checkpoint genes, tumor mutational burden (TMB) / microsatellite instability (MSI), tumor stemness index (mRNAsi), and drug sensitivity in CRC. ADAMTSL2 expression was validated using GSE71187 and quantitative real-time PCR (qRT-PCR). ADAMTSL2 was aberrantly expressed in pan cancer and CRC. An increased level of ADAMTSL2 expression in patients with CRC was significantly associated with the pathologic N stage (p < 0.001), pathologic stage (p < 0.001), age (p < 0.001), histological type (p < 0.001), and neoplasm type (p = 0.001). The high expression of ADAMTSL2 in patients with CRC was found to be significantly associated with a poorer overall survival (OS) (HR: 1.67; 95% CI: 1.18-2.38; p = 0.004), progression-free survival (PFS) (HR: 1.55; 95% CI: 1.14-2.11; p = 0.005) and disease-specific survival (DSS) (HR: 1.83; 95% CI: 1.16-2.89; p = 0.010). The expression of ADAMTSL2 in patients with CRC (p = 0.009) was identified as an independent prognostic determinant. ADAMTSL2 was associated with extracellular matrix receptor (ECM-receptor) interaction, transforming growth factor ß (TGF-ß) signaling pathway, and more. ADAMTSL2 expression was correlated with immune infiltration, immune checkpoint genes, TMB / MSI and mRNAsi in CRC. ADAMTSL2 expression was significantly and negatively correlated with 1-BET-762, Trametinib, and WZ3105 in CRC. ADAMTSL2 was significantly upregulated in CRC cell lines. The high expression of ADAMTSL2 is significantly correlated with lower OS and immune infiltration of CRC. ADAMTSL2 may be a potential prognostic biomarker and immunotherapeutic target for CRC patients.


Assuntos
Proteínas ADAMTS , Biomarcadores Tumorais , Neoplasias Colorretais , Biologia Computacional , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Biologia Computacional/métodos , Feminino , Masculino , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade , Instabilidade de Microssatélites , Idoso , Imunoterapia , Linhagem Celular Tumoral
18.
Cancer Imaging ; 24(1): 54, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654284

RESUMO

BACKGROUND: Our previous study suggests that tumor CD8+ T cells and macrophages (defined as CD68+ cells) infiltration underwent dynamic and heterogeneous changes during concurrent chemoradiotherapy (CCRT) in cervical cancer patients, which correlated with their short-term tumor response. This study aims to develop a CT image-based radiomics signature for such dynamic changes. METHODS: Thirty cervical squamous cell carcinoma patients, who were treated with CCRT followed by brachytherapy, were included in this study. Pre-therapeutic CT images were acquired. And tumor biopsies with immunohistochemistry at primary sites were performed at baseline (0 fraction (F)) and immediately after 10F. Radiomics features were extracted from the region of interest (ROI) of CT images using Matlab. The LASSO regression model with ten-fold cross-validation was utilized to select features and construct an immunomarker classifier and a radiomics signature. Their performance was evaluated by the area under the curve (AUC). RESULTS: The changes of tumor-infiltrating CD8+T cells and macrophages after 10F radiotherapy as compared to those at baseline were used to generate the immunomarker classifier (AUC= 0.842, 95% CI:0.680-1.000). Additionally, a radiomics signature was developed using 4 key radiomics features to predict the immunomarker classifier (AUC=0.875, 95% CI:0.753-0.997). The patients stratified based on this signature exhibited significant differences in treatment response (p = 0.004). CONCLUSION: The radiomics signature could be used as a potential predictor for the CCRT-induced dynamic alterations of CD8+ T cells and macrophages, which may provide a less invasive approach to appraise tumor immune status during CCRT in cervical cancer compared to tissue biopsy.


Assuntos
Linfócitos T CD8-Positivos , Quimiorradioterapia , Linfócitos do Interstício Tumoral , Macrófagos , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/imunologia , Quimiorradioterapia/métodos , Pessoa de Meia-Idade , Macrófagos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/imunologia , Braquiterapia/métodos , Radiômica
19.
Front Immunol ; 15: 1360955, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633259

RESUMO

With a shortage of organs for transplant, the use of marginal donors can be an effective measure to meet the shortfall. Myelodysplastic syndromes (MDS) are considered an absolute contraindication for organ donation because of the high invasive potential. Currently, organ transplantation from donors with a past history of MDS has not been reported. In this paper, we report the successful clinical experience of one liver transplantation and two kidney transplantations, with organs donated by a 39-year-old patient diagnosed with a past history of MDS following intracranial hemorrhage. Four and a half years after transplantation, the three recipients are all doing well. However, it is still not clear to what extent organs donated by patients with a past history of MDS can be safely transplanted. This report provides support for the careful use of marginal donors. With effective treatment and full peer assessment, livers and kidneys from donors with a past history of MDS may be safely transplanted.


Assuntos
Transplante de Fígado , Síndromes Mielodisplásicas , Humanos , Adulto , Doadores de Tecidos , Rim , Fígado
20.
Adv Sci (Weinh) ; 11(21): e2309753, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38544489

RESUMO

Maintaining precise temperature control is vital for cold chain food transport, as temperature fluctuations can cause significant food safety and quality issues. During transport, ice that melts can promote the growth of microbes and their spread, resulting in microbial cross-contamination. This study developed sustainable, non-melting, self-sanitizing "ice cubes" using food grade compositions including microporous cellulose sponges (MCS) and photosensitizers, aimed at enhancing temperature regulation and minimizing microbial contamination in the cold chain. Upon absorbing water, the MCS matched traditional ice in cooling efficiency and heat absorption and exhibit remarkable mechanical and thermal durability, withstanding multiple freeze-thaw cycles and compressive stresses. The cationic MCS combined with erythrosine B demonstrated strong self-sanitizing capabilities, effectively reducing microbial cross-contamination in food models. Additionally, the release rates of photosensitizers from the MCS can be modulated by altering environmental ionic strength. This research offers viable solutions to address microbial cross-contamination challenges in current cold chain systems.


Assuntos
Celulose , Microbiologia de Alimentos/métodos , Porosidade , Contaminação de Alimentos/prevenção & controle , Temperatura Baixa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA