Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Nanobiotechnology ; 22(1): 169, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609998

RESUMO

INTRODUCTION: Angiotensin-converting enzyme 2 (ACE2) and AXL tyrosine kinase receptor are known to be involved in the SARS-CoV-2 entry of the host cell. Therefore, targeting ACE2 and AXL should be an effective strategy to inhibit virus entry into cells. However, developing agents that can simultaneously target ACE2 and AXL remains a formidable task. The natural compound quercetin has been shown to inhibit AXL expression. MATERIALS AND METHODS: In this study, we employed PLGA nanoparticles to prepare nanoparticles encapsulated with quercetin, coated with ACE2-containing cell membranes, or encapsulated with quercetin and then coated with ACE-2-containing cell membranes. These nanoparticles were tested for their abilities to neutralize or inhibit viral infection. RESULTS: Our data showed that nanoparticles encapsulated with quercetin and then coated with ACE2-containing cell membrane inhibited the expression of AXL without causing cytotoxic activity. Nanoparticles incorporated with both quercetin and ACE2-containing cell membrane were found to be able to neutralize pseudo virus infection and were more effective than free quercetin and nanoparticles encapsulated with quercetin at inhibition of pseudo virus and SARS-CoV-2 infection. CONCLUSIONS: We have shown that the biomimetic nanoparticles incorporated with both ACE-2 membrane and quercetin showed the most antiviral activity and may be further explored for clinical application.


Assuntos
COVID-19 , Nanopartículas , Humanos , Enzima de Conversão de Angiotensina 2 , Quercetina/farmacologia , Quercetina/uso terapêutico , SARS-CoV-2
2.
J Biol Chem ; 299(6): 104814, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37178919

RESUMO

Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma (LUAD) patients often respond to EGFR tyrosine kinase inhibitors (TKIs) initially but eventually develop resistance to TKIs. The switch of EGFR downstream signaling from TKI-sensitive to TKI-insensitive is a critical mechanism-driving resistance to TKIs. Identification of potential therapies to target EGFR effectively is a potential strategy to treat TKI-resistant LUADs. In this study, we developed a small molecule diarylheptanoid 35d, a curcumin derivative, that effectively suppressed EGFR protein expression, killed multiple TKI-resistant LUAD cells in vitro, and suppressed tumor growth of EGFR-mutant LUAD xenografts with variant TKI-resistant mechanisms including EGFR C797S mutations in vivo. Mechanically, 35d triggers heat shock protein 70-mediated lysosomal pathway through transcriptional activation of several components in the pathway, such as HSPA1B, to induce EGFR protein degradation. Interestingly, higher HSPA1B expression in LUAD tumors associated with longer survival of EGFR-mutant, TKI-treated patients, suggesting the role of HSPA1B on retarding TKI resistance and providing a rationale for combining 35d with EGFR TKIs. Our data showed that combination of 35d significantly inhibits tumor reprogression on osimertinib and prolongs mice survival. Overall, our results suggest 35d as a promising lead compound to suppress EGFR expression and provide important insights into the development of combination therapies for TKI-resistant LUADs, which could have translational potential for the treatment of this deadly disease.


Assuntos
Adenocarcinoma de Pulmão , Diarileptanoides , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Linhagem Celular Tumoral , Diarileptanoides/farmacologia , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Lisossomos/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia
3.
Sci Adv ; 9(14): eade9944, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37027467

RESUMO

Immune checkpoint inhibitors (ICIs) targeting PD-L1 immunotherapy are state-of-the-art treatments for advanced non-small cell lung cancer (NSCLC). However, the treatment response of certain patients with NSCLC is unsatisfactory because of an unfavorable tumor microenvironment (TME) and poor permeability of antibody-based ICIs. In this study, we aimed to discover small-molecule drugs that can modulate the TME to enhance ICI treatment efficacy in NSCLC in vitro and in vivo. We identified a PD-L1 protein-modulating small molecule, PIK-93, using a cell-based global protein stability (GPS) screening system. PIK-93 mediated PD-L1 ubiquitination by enhancing the PD-L1-Cullin-4A interaction. PIK-93 reduced PD-L1 levels on M1 macrophages and enhanced M1 antitumor cytotoxicity. Combined PIK-93 and anti-PD-L1 antibody treatment enhanced T cell activation, inhibited tumor growth, and increased tumor-infiltrating lymphocyte (TIL) recruitment in syngeneic and human peripheral blood mononuclear cell (PBMC) line-derived xenograft mouse models. PIK-93 facilitates a treatment-favorable TME when combined with anti-PD-L1 antibodies, thereby enhancing PD-1/PD-L1 blockade cancer immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Microambiente Tumoral , Linfócitos do Interstício Tumoral
4.
EMBO Mol Med ; 15(6): e17014, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-36975376

RESUMO

Particulate matter 2.5 (PM2.5) is a risk factor for lung cancer. In this study, we investigated the molecular mechanisms of PM2.5 exposure on lung cancer progression. We found that short-term exposure to PM2.5 for 24 h activated the EGFR pathway in lung cancer cells (EGFR wild-type and mutant), while long-term exposure of lung cancer cells to PM2.5 for 90 days persistently promoted EGFR activation, cell proliferation, anchorage-independent growth, and tumor growth in a xenograft mouse model in EGFR-driven H1975 cancer cells. We showed that PM2.5 activated AhR to translocate into the nucleus and promoted EGFR activation. AhR further interacted with the promoter of TMPRSS2, thereby upregulating TMPRSS2 and IL18 expression to promote cancer progression. Depletion of TMPRSS2 in lung cancer cells suppressed anchorage-independent growth and xenograft tumor growth in mice. The expression levels of TMPRSS2 were found to correlate with nuclear AhR expression and with cancer stage in lung cancer patient tissue. Long-term exposure to PM2.5 could promote tumor progression in lung cancer through activation of EGFR and AhR to enhance the TMPRSS2-IL18 pathway.


Assuntos
Neoplasias Pulmonares , Material Particulado , Humanos , Camundongos , Animais , Material Particulado/toxicidade , Interleucina-18 , Transdução de Sinais , Neoplasias Pulmonares/patologia , Receptores ErbB/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
5.
EMBO Mol Med ; 14(11): e16818, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36256519

RESUMO

There is an unmet clinical need to end the COVID-19 pandemic. In the past 2 years, the SARS-CoV-2 continued to evolve and poses a critical challenge to the efficacy of the vaccine and neutralizing antibody therapies. The fifth wave of the pandemic is driven by the Omicron variants, due to their ability to evade prior immunity and their resistance to therapeutic antibodies. The report by Zhang et al in the current issue of EMBO Molecular Medicine shows that the engineered decoy ACE2 can reduce lung injury and improve survival in K18-hACE2 transgenic mice inoculated with a lethal dose of the SARS-CoV-2 and potentially targets the Omicron variant.


Assuntos
COVID-19 , SARS-CoV-2 , Camundongos , Animais , Humanos , COVID-19/terapia , Glicoproteína da Espícula de Coronavírus/genética , Pandemias , Anticorpos Neutralizantes/uso terapêutico , Camundongos Transgênicos , Anticorpos Antivirais
6.
Phytother Res ; 36(5): 2116-2126, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35229911

RESUMO

The extracts from Psoralea corylifolia Linn. (P. corylifolia) seeds have been shown to display antitumor activity. To date, the prospects of this plant and its active compounds in the treatment of non-small-cell lung cancer (NSCLC) have not been thoroughly studied. In this study, we identified a novel psorachromene compound that displays selective cytotoxic effects on all NSCLC cells tested, including NSCLC cells harboring epidermal growth factor receptor (EGFR) activation mutants (H1975L858R/T790M and H1975-MS35L858R/T790M/C797S ). Psorachromene induces G1 arrest in NSCLC cells harboring wild-type EGFR but induces apoptosis in NSCLC cells harboring activating EGFR mutations. Psorachromene inhibits activated EGFR signaling and kinase activity and suppresses tumor growth of implanted H1975-MS35L858R/T790M/C797S cells in nude mice. Molecular docking analysis revealed that psorachromene could form stronger bonds with mutant EGFR than wild-type EGFR, which might account for the greater cytotoxic effects observed in NSCLC cells harboring activating EGFR mutations (H1975 and H1975-MS35) than wild-type EGFR (A549). In conclusion, it is suggested that psorachromene is an attractive agent to be further explored for its use in the treatment of NSCLC patients harboring EGFR L858R/T790M/C797S.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Mutação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
7.
EMBO Mol Med ; 14(4): e15298, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35138028

RESUMO

The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants has altered the trajectory of the COVID-19 pandemic and raised some uncertainty on the long-term efficiency of vaccine strategy. The development of new therapeutics against a wide range of SARS-CoV-2 variants is imperative. We, here, have designed an inhalable siRNA, C6G25S, which covers 99.8% of current SARS-CoV-2 variants and is capable of inhibiting dominant strains, including Alpha, Delta, Gamma, and Epsilon, at picomolar ranges of IC50 in vitro. Moreover, C6G25S could completely inhibit the production of infectious virions in lungs by prophylactic treatment, and decrease 96.2% of virions by cotreatment in K18-hACE2-transgenic mice, accompanied by a significant prevention of virus-associated extensive pulmonary alveolar damage, vascular thrombi, and immune cell infiltrations. Our data suggest that C6G25S provides an alternative and effective approach to combating the COVID-19 pandemic.


Assuntos
COVID-19 , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Pandemias , RNA Interferente Pequeno/genética , SARS-CoV-2/genética
8.
Biomolecules ; 11(9)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34572484

RESUMO

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are approved treatments for non-small-cell lung cancer (NSCLC) patients harboring activating EGFR mutations. The EGFR C797S mutation is one of the known acquired-resistance mutations to the latest third-generation TKIs. At present, there are no clear options for treating patients who acquire resistance to third-generation TKIs. The acquisition of the EGFR C797S mutation was shown to upregulate the expression of AXL, a receptor tyrosine kinase of the TAM (TYRO3-AXL-MER) family, and the suppression of AXL is effective in reducing the growth of NSCLC cells harboring EGFR C797S. As quercetin was recently shown to inhibit AXL, quercetin may be effective in treating NSCLC cells harboring the EGFR C797S mutation. In this work, the cytotoxic effects of quercetin and its ability to inhibit tumor growth were examined in TKI-resistant NSCLC cells harboring the EGFR C797S mutation. We demonstrated that quercetin exhibited potent cytotoxic effects on NSCLC cells harboring the EGFR C797S mutation by inhibiting AXL and inducing apoptosis. Quercetin inhibited the tumor growth of xenografted NSCLC cells harboring the EGFR C797S mutation and appeared to act synergistically with brigatinib to inhibit of tumor growth in vivo. In summary, herein, we revealed that quercetin is an effective inhibitor for the treatment of non-small-cell lung cancer harboring the EGFR C797S mutation.


Assuntos
Receptores ErbB/genética , Neoplasias Pulmonares/genética , Mutação/genética , Quercetina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Clonais , Regulação para Baixo/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Compostos Organofosforados/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Pirimidinas/farmacologia , Quercetina/química , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptor Tirosina Quinase Axl
9.
Sci Rep ; 11(1): 8692, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888738

RESUMO

A metal nanoparticle composite, namely TPNT1, which contains Au-NP (1 ppm), Ag-NP (5 ppm), ZnO-NP (60 ppm) and ClO2 (42.5 ppm) in aqueous solution was prepared and characterized by spectroscopy, transmission electron microscopy, dynamic light scattering analysis and potentiometric titration. Based on the in vitro cell-based assay, TPNT1 inhibited six major clades of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with effective concentration within the range to be used as food additives. TPNT1 was shown to block viral entry by inhibiting the binding of SARS-CoV-2 spike proteins to the angiotensin-converting enzyme 2 (ACE2) receptor and to interfere with the syncytium formation. In addition, TPNT1 also effectively reduced the cytopathic effects induced by human (H1N1) and avian (H5N1) influenza viruses, including the wild-type and oseltamivir-resistant virus isolates. Together with previously demonstrated efficacy as antimicrobials, TPNT1 can block viral entry and inhibit or prevent viral infection to provide prophylactic effects against both SARS-CoV-2 and opportunistic infections.


Assuntos
Ouro/farmacologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Virus da Influenza A Subtipo H5N1/fisiologia , SARS-CoV-2/fisiologia , Prata/farmacologia , Óxido de Zinco/farmacologia , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/química , Antivirais/farmacologia , Farmacorresistência Viral/efeitos dos fármacos , Aditivos Alimentares/farmacologia , Ouro/química , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanocompostos/química , Oseltamivir/farmacologia , Tamanho da Partícula , Ligação Proteica/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Prata/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus/efeitos dos fármacos , Óxido de Zinco/química
10.
Cancer Lett ; 508: 76-91, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-33775711

RESUMO

The development of a new generation of tyrosine kinase inhibitors (TKIs) has improved the treatment response in lung adenocarcinomas. However, acquired resistance often occurs due to new epidermal growth factor receptor (EGFR) mutations. In particular, the C797S mutation confers drug resistance to T790M-targeting EGFR TKIs. To address C797S resistance, a promising therapeutic avenue is combination therapy that targets both total EGFR and acquired mutations to increase drug efficacy. We showed that combining vorinostat, a histone deacetylase inhibitor (HDACi), with brigatinib, a TKI, enhanced antitumor effects in primary culture and cell lines of lung adenocarcinomas harboring EGFR L858R/T790M/C797S mutations (EGFR-3M). While EGFR phosphorylation was decreased by brigatinib, vorinostat reduced total EGFR-3M (L858R/T790M/C797S) proteins through STUB1-mediated ubiquitination and degradation. STUB1 preferably ubiquitinated other EGFR mutants and facilitated protein turnover compared to EGFR-WT. The association between EGFR and STUB1 required the functional chaperone-binding domain of STUB1 and was further enhanced by vorinostat. Finally, STUB1 levels modulated EGFR downstream functions. Low STUB1 expression was associated with significantly poorer overall survival than high STUB1 expression in patients harboring mutant EGFR. Vorinostat combined with brigatinib significantly improved EGFR-TKI sensitivity to EGFR C797S by inducing EGFR-dependent cell death and may be a promising therapy in treating C797S-resistant lung adenocarcinomas.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Compostos Organofosforados/farmacologia , Pirimidinas/farmacologia , Vorinostat/farmacologia , Adenocarcinoma de Pulmão/enzimologia , Adenocarcinoma de Pulmão/genética , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Receptores ErbB/genética , Células HEK293 , Humanos , Neoplasias Pulmonares/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Compostos Organofosforados/administração & dosagem , Pirimidinas/administração & dosagem , Distribuição Aleatória , Vorinostat/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
11.
EMBO Mol Med ; 13(1): e12828, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33159417

RESUMO

To circumvent the devastating pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, a humanized decoy antibody (ACE2-Fc fusion protein) was designed to target the interaction between viral spike protein and its cellular receptor, angiotensin-converting enzyme 2 (ACE2). First, we demonstrated that ACE2-Fc could specifically abrogate virus replication by blocking the entry of SARS-CoV-2 spike-expressing pseudotyped virus into both ACE2-expressing lung cells and lung organoids. The impairment of viral entry was not affected by virus variants, since efficient inhibition was also observed in six SARS-CoV-2 clinical strains, including the D614G variants which have been shown to exhibit increased infectivity. The preservation of peptidase activity also enables ACE2-Fc to reduce the angiotensin II-mediated cytokine cascade. Furthermore, this Fc domain of ACE2-Fc was shown to activate NK cell degranulation after co-incubation with Spike-expressing H1975 cells. These promising characteristics potentiate the therapeutic prospects of ACE2-Fc as an effective treatment for COVID-19.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Antivirais/farmacologia , COVID-19/prevenção & controle , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/imunologia , Internalização do Vírus/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Chlorocebus aethiops , Células HEK293 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacologia , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Células Vero
12.
Mol Ther Oncolytics ; 18: 189-201, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32695876

RESUMO

Targeting metabolic reprogramming is an emerging strategy in cancer therapy. However, clinical attempts to target metabolic reprogramming have been proved to be challenging, with metabolic heterogeneity of cancer being one of many reasons that causes treatment failure. Here, we stratified non-small cell lung cancer (NSCLC) cells, mainly lung adenocarcinoma, based on their metabolic phenotypes and demonstrated that the aerobic glycolysis-preference NSCLC cell subtype was resistant to the OXPHOS-targeting inhibitors. We identified that monocarboxylate transporter 4 (MCT4), a lactate transporter, was highly expressed in the aerobic glycolysis-preference subtype with function supporting the proliferation of these cells. Glucose could induce the expression of MCT4 in these cells through a ΔNp63α and Sp1-dependent pathway. Next, we showed that knockdown of MCT4 increased intracellular lactate concentration and induced a reactive oxygen species (ROS)-dependent cellular apoptosis in the aerobic glycolysis-preference NSCLC cell subtype. By scanning a panel of monoclonal antibodies with MCT4 neutralizing activity, we further identified a MCT4 immunoglobulin M (IgM) monoclonal antibody showing capable anti-proliferation efficacy on the aerobic glycolysis-preference NSCLC cell subtype. Our findings indicate that the metabolic heterogeneity is a critical factor for NSCLC therapy and manipulating the expression or function of MCT4 can be an effective strategy in targeting the aerobic glycolysis-preference NSCLC cell subtype.

13.
J Control Release ; 324: 482-492, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32497570

RESUMO

Lung cancer is the primary cause of cancer-related death worldwide. 85%-90% of cases are non-small cell lung cancer (NSCLC) which characteristically exhibits altered epidermal growth factor receptor (EGFR) signaling is a major driver pathway. Unfortunately, therapeutic outcomes in treating NSCLC are compromised by the emergence of drug resistance in response to EGFR-tyrosine kinase inhibitor (TKI) targeted therapy due to the acquired resistance mutation EGFR T790M or activation of alternative pathways. There is current need for a new generation of TKIs to be developed to treat EGFR-TKI-resistant NSCLC. To overcome the above problems and improve clinical efficacy, nanotechnology with targeting abilities and sustained release has been proposed for EGFR-TKI-resistant NSCLC treatment and has already achieved success in in vitro or in vivo models. In this review, we summarize and illustrate representative nano-formulations targeting EGFR-TKI-resistant NSCLC. The described advances may pave the way to better understanding and design of nanocarriers and multifunctional nanosystems for efficient treatment for drug resistant NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
14.
Oncogenesis ; 9(4): 40, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321917

RESUMO

The aberrant subcellular translocation and distribution of epidermal growth factor receptor (EGFR) represent a major yet currently underappreciated cancer development mechanism in non-small cell lung cancer (NSCLC). In this study, we investigated the subcellular interactome of EGFR by using a spectral counting-based approach combined with liquid chromatography-tandem mass spectrometry to understand the associated protein networks involved in the tumorigenesis of NSCLC. A total of 54, 77, and 63 EGFR-interacting proteins were identified specifically in the cytosolic, mitochondrial, and nuclear fractions from a NSCLC cell line, respectively. Pathway analyses of these proteins using the KEGG database shown that the EGFR-interacting proteins of the cytosol and nucleus are involved in the ribosome and spliceosome pathways, respectively, while those of the mitochondria are involved in metabolizing propanoate, fatty acid, valine, leucine, and isoleucine. A selected nuclear EGFR-interacting protein, hnRNP A3, was found to modulate the accumulation of nuclear EGFR. Downregulation of hnRNP A3 reduced the nuclear accumulation of EGFR, and this was accompanied by reduced tumor growth ability in vitro and in vivo. These results indicate that variations in the subcellular translocation and distribution of EGFR within NSCLC cells could affect tumor progression.

15.
Molecules ; 25(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093124

RESUMO

Epidermal growth factor receptor (EGFR) is frequently overexpressed and mutated in non-small cell lung cancer (NSCLC), which is the major type of lung cancer. The EGFR tyrosine kinase inhibitors (TKIs) are the approved treatment for patients harboring activating mutations in the EGFR kinase. However, most of the patients treated with EGFR-TKIs developed resistance. Therefore, the development of compounds exhibiting unique antitumor activities might help to improve the management of NSCLC patients. The total flavonoids from Daphne genkwa Sieb. et Zucc. have been shown to contain antitumor activity. Here, we have isolated a novel flavonoid hydroxygenkwanin (HGK) that displays selective cytotoxic effects on all of the NSCLC cells tested. In this study, we employed NSCLC cells harboring EGFR mutations and xenograft mouse model to examine the antitumor activity of HGK on TKI-resistant NSCLC cells. The results showed that HGK suppressed cancer cell viability both in vitro and in vivo. Whole-transcriptome analysis suggests that EGFR is a potential upstream regulator that is involved in the gene expression changes affected by HGK. In support of this analysis, we presented evidence that HGK reduced the level of EGFR and inhibited several EGFR-downstream signalings. These results suggest that the antitumor activity of HGK against TKI-resistant NSCLC cells acts by enhancing the degradation of EGFR.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Flavonoides/farmacologia , Neoplasias Pulmonares , Proteínas de Neoplasias/metabolismo , Proteólise/efeitos dos fármacos , Células A549 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Sobrevivência Celular/efeitos dos fármacos , Daphne/química , Receptores ErbB/metabolismo , Flavonoides/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
16.
Cancers (Basel) ; 13(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396393

RESUMO

Oncogenic mutations of epidermal growth factor receptor (EGFR) are responsive to targeted tyrosine kinase inhibitor (TKI) treatment in non-small-cell lung cancer (NSCLC). However, NSCLC patients harboring activating EGFR mutations inevitably develop resistance to TKIs. The acquired EGFR C797S mutation is a known mechanism that confers resistance to third-generation EGFR TKIs such as AZD9291. In this work, we employed CRISPR/Cas9 genome-editing technology to knock-in the EGFR C797S mutation into an NSCLC cell line harboring EGFR L858R/T790M. The established cell model was used to investigate the biology and treatment strategy of acquired EGFR C797S mutations. Transcriptome and proteome analyses revealed that the differentially expressed genes/proteins in the cells harboring the EGFR C797S mutation are associated with a mesenchymal-like cell state with elevated expression of AXL receptor tyrosine kinase. Furthermore, we presented evidence that inhibition of AXL is effective in slowing the growth of NSCLC cells harboring EGFR C797S. Our findings suggest that AXL inhibition could be a second-line or a potential adjuvant treatment for NSCLC harboring the EGFR C797S mutation.

17.
J Nat Prod ; 82(11): 3065-3073, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31718182

RESUMO

Natural triterpenoids, such as oleanolic acid (OA) and hederagenin, display anti-lung cancer effects, and nitric oxide (NO) is associated with some oncogenic signaling pathways. Accordingly, 17 OA/hederagenin-NO donor hybrids were designed, synthesized, and evaluated against tumor cells. The most potent compound, 13, significantly inhibited the proliferation of five tumor cell lines (IC50 4.6-5.2 µM), while hederagenin inhibited the growth of only A549 tumor cells (IC50 > 10 µM). Furthermore, compound 13 showed stronger inhibitory effects on EGFR-LTC kinase activity (IC50 0.01 µM) than hederagenin (IC50 > 20 µM) and inhibited the proliferation of gefitinib-resistant H1975 (IC50 8.1 µM) and osimertinib-resistant H1975-LTC (IC50 7.6 µM) non-small-cell lung cancer (NSCLC) cells. Moreover, compound 13 produced the most NO in H1975 tumor cells, which indicated that NO may play a synergistic role. Collectively, compound 13, a novel hederagenin-NO donor hybrid with a different chemical structure from those of the current FDA-approved EGFR-targeted anti-NSCLC drugs, may be a promising lead compound for the treatment of NSCLC expressing gefitinib-resistant EGFR with a T790 M mutation or osimertinib-resistant EGFR-LTC with an L858R/T790M/C797S mutation. This work should shed light on the discovery of new anti-NSCLC drugs targeting EGFR from natural products.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/farmacologia , Ácido Oleanólico/análogos & derivados , Células A549 , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Gefitinibe/farmacologia , Humanos , Mutação , Óxido Nítrico/metabolismo , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Inibidores de Proteínas Quinases/química
18.
Phytomedicine ; 64: 152926, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31454652

RESUMO

BACKGROUND: Sulforaphane (SFN) has been shown to induce the production of reactive oxygen species (ROS) and inhibit epidermal growth factor receptor (EGFR)-mediated signaling in non-small-cell lung cancer (NSCLC). NSCLC cells harboring constitutively active EGFR mutations are more sensitive to SFN treatment than cells with wild-type EGFR, but whether NSCLC cells with high levels of EGFR expression are more resistant or sensitive to SFN treatment is not known. STUDY DESIGN: We employed a pair of cell lines, CL1-0 and CL1-5, which have the same genetic background but different levels of EGFR expression, to examine the effects of high EGFR level in the sensitivity to SFN. METHODS: The effect of SFN on cell viability and tumorigenicity was examined by trypan blue dye-exclusion assay, clonogenic assays, flow cytometry, and immunoblotting in vitro as well as tumorigenicity study in vivo. ROS levels in cells were assessed by flow cytometry using the ROS-reactive fluorescent indicator CM-H2DCFDA. Knockdown of EGFR in CL1-5 cells was infected with an EGFR-targeting small hairpin (interfering) RNA (shRNA)-containing lentivirus. RESULTS: We present evidence that cells with high-level EGFR expression (CL1-5) are more resistant to SFN treatment than those with low-level expression (CL1-0). SFN treatment produced a similar increase in ROS and caused arrest of a cell population at S-phase accompanied by the induction of γH2AX, a DNA damage-response marker, in both cell sublines. However, SFN induced apoptosis only in the high-EGFR-expressing CL1-0 subline. Pretreatment with the antioxidant N-acetyl-L-cysteine prevented SFN-induced apoptosis in CL1-0 cells and production of γH2AX in both CL1-0 and CL1-5 cells. shRNA-mediated knockdown of EGFR in CL1-5 cells rendered the cells susceptible to SFN-induced apoptosis. CONCLUSION: The cellular effects produced by SFN in NSCLC cells are largely mediated by SFN-induced production of ROS. Cells with higher levels of EGFR were more resistant to SFN treatment and showed resistance to SFN-induced apoptosis, suggesting that high EGFR levels protect cells from SFN-induced apoptosis. Despite this, we found that SFN retained the ability to inhibit the growth of NSCLC tumors with high-level EGFR expression in vivo.


Assuntos
Anticarcinógenos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Isotiocianatos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/farmacologia , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Transdução de Sinais/efeitos dos fármacos , Sulfóxidos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Exp Clin Cancer Res ; 38(1): 282, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262325

RESUMO

BACKGROUND: Lung cancer is the most common cause of cancer-related mortality worldwide despite diagnostic improvements and the development of targeted therapies, notably including epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). The phosphoinositide 3-kinase (PI3K)/AKT/mechanistic target of rapamycin (mTOR) signaling has been shown to contribute to tumorigenesis, tumor progression, and resistance to therapy in most human cancer types, including lung cancer. Here, we explored the therapeutic effects of co-inhibition of PI3K and mTOR in non-small-cell lung cancer (NSCLC) cells with different EGFR status. METHODS: The antiproliferative activity of a dual PI3K/mTOR inhibitor BEZ235 was examined by the WST-1 assay and the soft agar colony-formation assay in 2 normal cell lines and 12 NSCLC cell lines: 6 expressing wild-type EGFR and 6 expressing EGFR with activating mutations, including exon 19 deletions, and L858R and T790 M point mutations. The combination indexes of BEZ235 with cisplatin or an EGFR-TKI, BIBW2992 (afatinib), were calculated. The mechanisms triggered by BEZ235 were explored by western blotting analysis. The anti-tumor effect of BEZ235 alone or combined with cisplatin or BIBW2992 were also studied in vivo. RESULTS: BEZ235 suppressed tumor growth in vitro and in vivo by inducing cell-cycle arrest at G1 phase, but without causing cell death. It also reduced the expression of cyclin D1/D3 by regulating both its transcription and protein stability. Moreover, BEZ235 synergistically enhanced cisplatin-induced apoptosis in NSCLC cells by enhancing or prolonging DNA damage and BIBW2992-induced apoptosis in EGFR-TKI-resistant NSCLC cells containing a second TKI-resistant EGFR mutant. CONCLUSIONS: The dual PI3K/mTOR inhibition by BEZ235 is an effective antitumor strategy for enhancing the efficacy of chemotherapy or targeted therapy, even as a monotherapy, to restrict tumor growth in lung cancer treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Imidazóis/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Quinolinas/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Células A549 , Afatinib/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Cisplatino/uso terapêutico , Ciclina D1/genética , Ciclina D1/metabolismo , Ciclina D3/genética , Ciclina D3/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Imidazóis/farmacologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Quinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
20.
Nanoscale Res Lett ; 14(1): 18, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30635791

RESUMO

CdS/CdSe quantum dot-sensitized solar cells (QDSSCs) were fabricated on two types of TiO2 photoanodes, namely nanosheets (NSs) and nanoparticles. The TiO2 NSs with high (001)-exposed facets were prepared via a hydrothermal method, while the TiO2 nanoparticles used the commercial Degussa P-25. It was found that the pore size, specific surface area, porosity, and electron transport properties of TiO2 NSs were generally superior to those of P-25. As a result, the TiO2 NS-based CdS/CdSe QDSSC has exhibited a power conversion efficiency of 4.42%, which corresponds to a 54% improvement in comparison with the P-25-based reference cell. This study provides an effective photoanode design using nanostructure approach to improve the performance of TiO2-based QDSSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA