Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Acta Biomater ; 157: 467-486, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460288

RESUMO

Diabetic wounds are challenging to heal due to complex pathogenic abnormalities. Routine treatment with acid fibroblast growth factor (aFGF) is widely used for diabetic wounds but hardly offers a satisfying outcome due to its instability. Despite the emergence of various nanoparticle-based protein delivery approaches, it remains challenging to engineer a versatile delivery system capable of enhancing protein stability without the need for complex preparation. Herein, a polyphenol-driven facile assembly of nanosized coacervates (AE-NPs) composed of aFGF and Epigallocatechin-3-gallate (EGCG) was constructed and applied in the healing of diabetic wounds. First, the binding patterns of EGCG and aFGF were predicted by molecular docking analysis. Then, the characterizations demonstrated that AE-NPs displayed higher stability in hostile conditions than free aFGF by enhancing the binding activity of aFGF to cell surface receptors. Meanwhile, the AE-NPs also had a powerful ability to scavenge reactive oxygen species (ROS) and promote angiogenesis, which significantly accelerated full-thickness excisional wound healing in diabetic mice. Besides, the AE-NPs suppressed the early scar formation by improving collagen remodeling and the mechanism was associated with the TGF-ß/Smad signaling pathway. Conclusively, AE-NPs might be a potential and facile strategy for stabilizing protein drugs and achieving the scar-free healing of diabetic wounds. STATEMENT OF SIGNIFICANCE: Diabetic chronic wound is among the serious complications of diabetes that eventually cause the amputation of limbs. Herein, a polyphenol-driven facile assembly of nanosized coacervates (AE-NPs) composed of aFGF and EGCG was constructed. The EGCG not only acted as a carrier but also possessed a therapeutic effect of ROS scavenging. The AE-NPs enhanced the binding activity of aFGF to cell surface receptors on the cell surface, which improved the stability of aFGF in hostile conditions. Moreover, AE-NPs significantly accelerated wound healing and improved collagen remodeling by regulating the TGF-ß/Smad signaling pathway. Our results bring new insights into the field of polyphenol-containing nanoparticles, showing their potential as drug delivery systems of macromolecules to treat diabetic wounds.


Assuntos
Diabetes Mellitus Experimental , Camundongos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacologia , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio , Cicatrização , Cicatriz , Colágeno/farmacologia , Fator de Crescimento Transformador beta/farmacologia
3.
Int J Biol Macromol ; 222(Pt B): 2729-2743, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36240893

RESUMO

The general treatment of diabetic wound was use of wound dressings to absorb excess exudate. However, traditional wound dressings neither mimic the skin-like properties nor easily be withdrawn from the wound. Herein, the skin-adaptive three-layered films (AGB) dressing has been designed by alternatively depositing phenylboronic acid-grafted γ-PGA (PBA-PGA) and polyvinyl alcohol (PVA). The thickness of AGB film was only 479 µm and its flexibility was obviously strengthen by the boronic ester cross-linking. Besides, the dry AGB film was conveniently adhered to the fresh wound, where its adhesive force reached to 1267 ± 330 mN. Moreover, the adhered AGB film was easily peeled without any second damage after hydration. An anti-inflammatory tripeptide (KPV) and epidermal growth factor (EGF) as biologic factors were respectively encapsulated in the bottom layer and the middle-top two layers of AGB film. KPV was firstly released within 3 day and EGF was subsequently released in a glucose-responsive manner. AGB film containing KPV and EGF (K-E-AGB) could significantly improve the repair rate of full-thickness skin wound on diabetic mice. The mechanism of wound healing was associated with inflammatory inhibition, angiogenesis and collagen deposition. Collectively, skin-adaptive film may be a promising dressing as delivery of biologic factors for the chronic wound.


Assuntos
Diabetes Mellitus Experimental , Fator de Crescimento Epidérmico , Camundongos , Animais , Fator de Crescimento Epidérmico/farmacologia , Cicatrização , Diabetes Mellitus Experimental/metabolismo , Bandagens , Colágeno/química
4.
J Control Release ; 350: 93-106, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35973472

RESUMO

Diabetic foot ulcer (DFU) is a devastating complication in diabetes patients, imposing a high risk of amputation and economic burden on patients. Sustained inflammation and angiogenesis hindrance are thought to be two key drivers of the pathogenesis of such ulcers. Nitric oxide (NO) has been proven to accelerate the healing of acute or chronic wounds by modulating inflammation and angiogenesis. However, the use of gas-based therapeutics is difficult for skin wounds. Herein, therapeutic NO gas was first prepared as stable microbubbles, followed by incorporation into a cold Poloxamer-407 (P407) solution. Exposed to the DFU wound, the cold P407 solution would rapidly be transformed into a semisolid hydrogel under body temperature and accordingly capture NO microbubbles. The NO microbubble-captured hydrogel (PNO) was expected to accelerate wound healing in diabetic feet. The NO microbubbles had an average diameter of 0.8 ± 0.4 µm, and most of which were captured by the in situ P407 hydrogel. Moreover, the NO microbubbles were evenly distributed inside the hydrogel and kept for a longer time. In addition, the gelling temperature of 30% (w/v) P407 polymer (21 °C) was adjusted to 31 °C for the PNO gel, which was near the temperature of the skin surface. Rheologic studies showed that the PNO gel had mechanical strength comparable with that of the P407 hydrogel. The cold PNO solution was conveniently sprayed or smeared on the wound of DFU and rapidly gelled. In vivo studies showed that PNO remarkably accelerated wound healing in rats with DFU. Moreover, the sustained inflammation at the DFU wound was largely reversed by PNO, as reflected by the decreased levels of proinflammatory cytokines (IL-1ß, IL-6 and TNF-α) and the increased levels of anti-inflammatory cytokines (IL-10, IL-22 and IL-13). Meanwhile, angiogenesis was significantly promoted by PNO, resulting in rich blood perfusion at the DFU wounds. The therapeutic mechanism of PNO was highly associated with polarizing macrophages and maintaining the homeostasis of the extracellular matrix. Collectively, PNO gel may be a promising vehicle of therapeutic NO gas for DFU treatment.


Assuntos
Diabetes Mellitus , Pé Diabético , Animais , Citocinas , Pé Diabético/tratamento farmacológico , Pé Diabético/patologia , Hidrogéis , Inflamação , Interleucina-10 , Interleucina-13 , Interleucina-6 , Neovascularização Patológica , Óxido Nítrico , Poloxâmero , Ratos , Fator de Necrose Tumoral alfa , Cicatrização
5.
ACS Biomater Sci Eng ; 7(10): 4859-4869, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34547895

RESUMO

KPV (Lys-Pro-Val), which is a tripeptide derived from α-MSH (α-melanocyte-stimulating hormone), has an anti-inflammatory effect on colitis. However, KPV solution is very unstable when rectally administered, compromising its therapeutic efficacy. Herein, cysteamine-grafted γ-polyglutamic acid (SH-PGA) was synthesized by conjugating cysteamine with the carboxyl groups of γ-PGA. The synthesized SH-PGA has the thiol grafting amount of 4.5 ± 0.3 mmol/g. Without the use of the cross-linker, the SH-PGA hydrogel with 4% of the polymer was formed by self-cross-linking of thiol groups. Moreover, the formation of the SH-PGA hydrogel was not affected by KPV. The KPV/SH-PGA hydrogel presented higher elastic modulus (G') than the corresponding viscous modulus (G″) at 0.01-10 Hz, exhibiting good mechanical stability. The KPV/SH-PGA hydrogel presented a shear-thinning behavior, which was helpful for rectal administration. Only 30% of KPV was released from the KPV/SH-PGA hydrogel within 20 min, followed by a sustained-release behavior. Importantly, the stability of KPV in the SH-PGA hydrogel was obviously enhanced, which was presented by detecting its anti-inflammatory activity and promoting cell migration potential after 2 h of exposure to 37 °C. The enhanced therapeutic effect of the KPV/SH-PGA hydrogel on colitis was confirmed on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced ulcerative colitis rats. The colitis symptoms including body weight loss and the disease activity index score were obviously attenuated by rectally administering the KPV/SH-PGA hydrogel. Besides, the KPV/SH-PGA hydrogel treatment prevented the colon shortening of TNBS-infused rats and decreased the colonic myeloperoxidase level. The morphology of the colon including the epithelial barrier, crypt, and intact goblet cells was recovered after KPV/SH-PGA hydrogel treatment. Besides, the KPV/SH-PGA hydrogel decreased the expression of proinflammatory cytokines such as tumor necrosis factor α and interleukin 6. Collectively, the KPV/SH-PGA hydrogel may provide a promising strategy for the treatment of ulcerative colitis.


Assuntos
Colite Ulcerativa , Animais , Colite Ulcerativa/induzido quimicamente , Cisteamina , Hidrogéis , Ácido Poliglutâmico/análogos & derivados , Ratos , Ácido Trinitrobenzenossulfônico/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA