Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 215: 109038, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39163651

RESUMO

Anthocyanins and proanthocyanidins (PAs) are important secondary metabolites in plants, high contents of which are an important goal for quality breeding of white clover (Trifolium repens). However, the involvement of glutathione S-transferase (GST) in the transport of anthocyanins and PAs remains unexplored in white clover. This study identified 153 different TrGSTs in white clover. At the transcriptional level, compared to other TrGSTFs, TrGSTF10 and TrGSTF15 are highly expressed in the 'Purple' white clover, and they may work with the anthocyanin biosynthesis structural genes CHS and CHI to contribute to pigment buildup in white clover. Subcellular localization confirmed that TrGSTF10 and TrGSTF15 are located in the cytoplasm. Additionally, molecular docking experiments showed that TrGSTF10 and TrGSTF15 have similar binding affinity with two flavonoid monomers. Overexpression of TrGSTF15 complemented the deficiency of anthocyanin coloring and PA accumulation in the Arabidopsis tt19 mutant. The initial findings of this research indicate that TrGSTF15 encodes an important transporter of anthocyanin and PA in white clover, thus providing a new perspective for the further exploration of related transport and regulatory mechanisms.

2.
Plant Dis ; 108(7): 2197-2205, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38956749

RESUMO

Rust disease is a common plant disease that can cause wilting, slow growth of plant leaves, and even affect the growth and development of plants. Orchardgrass (Dactylis glomerata L.) is native to temperate regions of Europe, which has been introduced as a superior forage grass in temperate regions worldwide. Orchardgrass has rich genetic diversity and is widely distributed in the world, which may contain rust resistance genes not found in other crops. Therefore, we collected a total of 333 orchardgrass accessions from different regions around the world. Through a genome-wide association study (GWAS) analysis conducted in four different environments, 91 genes that overlap or are adjacent to significant single nucleotide polymorphisms (SNPs) were identified as potential rust disease resistance genes. Combining transcriptome data from susceptible (PI292589) and resistant (PI251814) accessions, the GWAS candidate gene DG5C04160.1 encoding glutathione S-transferase (GST) was found to be important for orchardgrass rust (Puccinia graminis) resistance. Interestingly, by comparing the number of GST gene family members in seven species, it was found that orchardgrass has the most GST gene family members, containing 119 GST genes. Among them, 23 GST genes showed significant differential expression after inoculation with the rust pathogen in resistant and susceptible accessions; 82% of the genes still showed significantly increased expression 14 days after inoculation in resistant accessions, while the expression level significantly decreased in susceptible accessions. These results indicate that GST genes play an important role in orchardgrass resistance to rust (P. graminis) stress by encoding GST to reduce its oxidative stress response.


Assuntos
Dactylis , Resistência à Doença , Estudo de Associação Genômica Ampla , Doenças das Plantas , Puccinia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Puccinia/genética , Puccinia/fisiologia , Dactylis/genética , Dactylis/microbiologia , Perfilação da Expressão Gênica , Polimorfismo de Nucleotídeo Único/genética , Glutationa Transferase/genética , Genes de Plantas/genética , Transcriptoma , Basidiomycota/fisiologia , Basidiomycota/genética
3.
Theor Appl Genet ; 137(7): 149, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836874

RESUMO

KEY MESSAGE: Analyze the evolutionary pattern of DNAJ protein genes in the Panicoideae, including pearl millet, to identify and characterize the biological function of PgDNAJ genes in pearl millet. Global warming has become a major factor threatening food security and human development. It is urgent to analyze the heat-tolerant mechanism of plants and cultivate crops that are adapted to high temperature conditions. The Panicoideae are the second largest subfamily of the Poaceae, widely distributed in warm temperate and tropical regions. Many of these species have been reported to have strong adaptability to high temperature stress, such as pearl millet, foxtail millet and sorghum. The evolutionary differences in DNAJ protein genes among 12 Panicoideae species and 10 other species were identified and analyzed. Among them, 79% of Panicoideae DNAJ protein genes were associated with retrotransposon insertion. Analysis of the DNAJ protein pan-gene family in six pearl millet accessions revealed that the non-core genes contained significantly more TEs than the core genes. By identifying and analyzing the distribution and types of TEs near the DNAJ protein genes, it was found that the insertion of Copia and Gypsy retrotransposons provided the source of expansion for the DNAJ protein genes in the Panicoideae. Based on the analysis of the evolutionary pattern of DNAJ protein genes in Panicoideae, the PgDNAJ was obtained from pearl millet through identification. PgDNAJ reduces the accumulation of reactive oxygen species caused by high temperature by activating ascorbate peroxidase (APX), thereby improving the heat resistance of plants. In summary, these data provide new ideas for mining potential heat-tolerant genes in Panicoideae, and help to improve the heat tolerance of other crops.


Assuntos
Pennisetum , Proteínas de Plantas , Pennisetum/genética , Pennisetum/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Proteínas de Choque Térmico HSP40/genética , Regulação da Expressão Gênica de Plantas , Retroelementos/genética , Poaceae/genética , Evolução Molecular , Genes de Plantas
4.
Theor Appl Genet ; 137(7): 157, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861001

RESUMO

KEY MESSAGE: Through the histological, physiological, and transcriptome-level identification of the abscission zone of Pennisetum alopecuroides 'Liqiu', we explored the structure and the genes related to seed shattering, ultimately revealing the regulatory network of seed shattering in P. alopecuroides. Pennisetum alopecuroides is one of the most representative ornamental grass species of Pennisetum genus. It has unique inflorescence, elegant appearance, and strong stress tolerance. However, the shattering of seeds not only reduces the ornamental effect, but also hinders the seed production. In order to understand the potential mechanisms of seed shattering in P. alopecuroides, we conducted morphological, histological, physiological, and transcriptomic analyses on P. alopecuroides cv. 'Liqiu'. According to histological findings, the seed shattering of 'Liqiu' was determined by the abscission zone at the base of the pedicel. Correlation analysis showed that seed shattering was significantly correlated with cellulase, lignin, auxin, gibberellin, cytokinin and jasmonic acid. Through a combination of histological and physiological analyses, we observed the accumulation of cellulase and lignin during 'Liqiu' seed abscission. We used PacBio full-length transcriptome sequencing (SMRT) combined with next-generation sequencing (NGS) transcriptome technology to improve the transcriptome data of 'Liqiu'. Transcriptomics further identified many differential genes involved in cellulase, lignin and plant hormone-related pathways. This study will provide new insights into the research on the shattering mechanism of P. alopecuroides.


Assuntos
Regulação da Expressão Gênica de Plantas , Pennisetum , Reguladores de Crescimento de Plantas , Sementes , Transcriptoma , Pennisetum/genética , Pennisetum/fisiologia , Pennisetum/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Perfilação da Expressão Gênica , Lignina/metabolismo
5.
Microorganisms ; 12(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38674660

RESUMO

Soil health is seriously threatened by the overuse of chemical fertilizers in agricultural management. Biogas slurry is often seen as an organic fertilizer resource that is rich in nutrients, and its use has the goal of lowering the amount of chemical fertilizers used while preserving crop yields and soil health. However, the application of continuous biogas slurry has not yet been studied for its long-term impact on soil nutrients and microbial communities in a rotation system of annual ryegrass-silage maize (Zea mays). This study aimed to investigate the impacts on the chemical properties and microbial community of farmland soils to which chemical fertilizer (NPK) (225 kg ha-1), biogas slurry (150 t ha-1), and a combination (49.5 t ha-1 biogas slurry + 150 kg ha-1 chemical fertilizer) were applied for five years. The results indicated that compared to the control group, the long-term application of biogas slurry significantly increased the SOC, TN, AP, and AK values by 45.93%, 39.52%, 174.73%, and 161.54%, respectively; it neutralized acidic soil and increased the soil pH. TN, SOC, pH, and AP are all important environmental factors that influence the structural composition of the soil's bacterial and fungal communities. Chemical fertilizer application significantly increased the diversity of the bacterial community. Variation was observed in the composition of soil bacterial and fungal communities among the different treatments. The structure and diversity of soil microbes are affected by different methods of fertilization; the application of biogas slurry not only increases the contents of soil nutrients but also regulates the soil's bacterial and fungal community structures. Therefore, biogas slurry can serve as a sustainable management measure and offers an alternative to the application of chemical fertilizers for sustainable intensification.

6.
BMC Genomics ; 25(1): 235, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438835

RESUMO

BACKGROUND: Orchardgrass (Dactylis glomerata L.), a perennial forage, has the advantages of rich leaves, high yield, and good quality and is one of the most significant forage for grassland animal husbandry and ecological management in southwest China. Mitochondrial (mt) genome is one of the major genetic systems in plants. Studying the mt genome of the genus Dactylis could provide more genetic information in addition to the nuclear genome project of the genus. RESULTS: In this study, we sequenced and assembled two mitochondrial genomes of Dactylis species of D. glomerata (597, 281 bp) and D. aschersoniana (613, 769 bp), based on a combination of PacBio and Illumina. The gene content in the mitochondrial genome of D. aschersoniana is almost identical to the mitochondrial genome of D. glomerata, which contains 22-23 protein-coding genes (PCGs), 8 ribosomal RNAs (rRNAs) and 30 transfer RNAs (tRNAs), while D. glomerata lacks the gene encoding the Ribosomal protein (rps1) and D. aschersoniana contains one pseudo gene (atp8). Twenty-three introns were found among eight of the 30 protein-coding genes, and introns of three genes (nad 1, nad2, and nad5) were trans-spliced in Dactylis aschersoniana. Further, our mitochondrial genome characteristics investigation of the genus Dactylis included codon usage, sequences repeats, RNA editing and selective pressure. The results showed that a large number of short repetitive sequences existed in the mitochondrial genome of D. aschersoniana, the size variation of two mitochondrial genomes is due largely to the presence of a large number of short repetitive sequences. We also identified 52-53 large fragments that were transferred from the chloroplast genome to the mitochondrial genome, and found that the similarity was more than 70%. ML and BI methods used in phylogenetic analysis revealed that the evolutionary status of the genus Dactylis. CONCLUSIONS: Thus, this study reveals the significant rearrangements in the mt genomes of Pooideae species. The sequenced Dactylis mt genome can provide more genetic information and improve our evolutionary understanding of the mt genomes of gramineous plants.


Assuntos
Genoma Mitocondrial , Animais , Genoma Mitocondrial/genética , Dactylis , Filogenia , Hibridização Genômica Comparativa , RNA Ribossômico , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA