Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Transl Res ; 9(11): 4785-4806, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29218080

RESUMO

Glioblastoma multiforme (GBM) is one of the most malignant and aggressive brain tumors with great amount of hyaluronan (HA) secretion and CD44 overexpression (HA receptor). CD44 has been suggested as a cancer stem cells (CSCs) marker. However, several clinical studies have indicated that CD44low glioma cell exhibit CSCs traits. Additionally, our previous study indicated that more CD44 expression was associated with a better prognosis in GBM patients. To determine whether CD44 is an appropriate marker of glioma stem cells (GSCs), we manipulated CD44 expression using intrinsic (CD44 knockdown, CD44kd) and extrinsic (HA supplement, HA+) methods. Our results show that CD44kd suppressed cell proliferation by retarding cell cycle progression from G0/G1 to S phase. Furthermore, it caused GSCs traits, including lower expression of differentiation marker (glial fibrillary acidic protein, GFAP), a higher level of sphere formation and higher expression of stem cell markers (CD133, nestin and Oct4). The reduction of CD44 expression induced by HA+ was accompanied by an increase in GSCs properties. Interestingly, the presence of HA+ in glioma cells with GSC traits conversely facilitated differentiation. Our data indicated that the CD44 low-expressing cells exhibit more GSCs straits, suggesting that CD44 is not an appropriate marker for GSCs. Furthermore, the preferential expression of CD44 at the invasive rim in rat glioma specimen implies that CD44 may be more important for invasion and migration instead of GSCs marker in glioma.

2.
Biomed Opt Express ; 7(2): 542-58, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26977361

RESUMO

Spatially resolved diffuse reflectance spectroscopy (SRDRS) has been employed to quantify tissue optical properties and its interrogation volume is majorly controlled by the source-to-detector separations (SDSs). To noninvasively quantify properties of dermis, a SRDRS setup that includes SDS shorter than 1 mm is required. It will be demonstrated in this study that Monte Carlo simulations employing the Henyey-Greenstein phase function cannot always precisely predict experimentally measured diffuse reflectance at such short SDSs, and we speculated this could be caused by the non-negligible backward light scattering at short SDSs that cannot be properly modeled by the Henyey-Greenstein phase function. To accurately recover the optical properties and functional information of dermis using SRDRS, we proposed the use of the modified two-layer (MTL) geometry. Monte Carlo simulations and phantom experiment results revealed that the MTL probing geometry was capable of faithfully recovering the optical properties of upper dermis. The capability of the MTL geometry in probing the upper dermis properties was further verified through a swine study, and it was found that the measurement results were reasonably linked to histological findings. Finally, the MTL probe was utilized to study psoriatic lesions. Our results showed that the MTL probe was sensitive to the physiological condition of tissue volumes within the papillary dermis and could be used in studying the physiology of psoriasis.

3.
World J Stem Cells ; 7(2): 512-20, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25815136

RESUMO

Scientific evidence suggests that stem cells possess the anti-aging ability to self-renew and maintain differentiation potentials, and quiescent state. The objective of this review is to discuss the micro-environment where stem cells reside in vivo, the secreted factors to which stem cells are exposed, the hypoxic environment, and intracellular factors including genome stability, mitochondria integrity, epigenetic regulators, calorie restrictions, nutrients, and vitamin D. Secreted tumor growth factor-ß and fibroblast growth factor-2 are reported to play a role in stem cell quiescence. Extracellular matrices may interact with caveolin-1, the lipid raft on cell membrane to regulate quiescence. N-cadherin, the adhesive protein on niche cells provides support for stem cells. The hypoxic micro-environment turns on hypoxia-inducible factor-1 to prevent mesenchymal stem cells aging through p16 and p21 down-regulation. Mitochondria express glucosephosphate isomerase to undergo glycolysis and prevent cellular aging. Epigenetic regulators such as p300, protein inhibitors of activated Stats and H19 help maintain stem cell quiescence. In addition, calorie restriction may lead to secretion of paracrines cyclic ADP-ribose by intestinal niche cells, which help maintain intestinal stem cells. In conclusion, it is crucial to understand the anti-aging phenomena of stem cells at the molecular level so that the key to solving the aging mystery may be unlocked.

4.
Biomed Opt Express ; 6(2): 390-404, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25780731

RESUMO

The pathogenesis and ideal treatment of keloid are still largely unknown, and it is essential to develop an objective assessment of keloid severity to evaluate the therapeutic response. We previously reported that our diffuse reflectance spectroscopy (DRS) system could assist clinicians in understanding the functional and structural condition of keloid scars. The purpose of this study was to understand clinical applicability of our DRS system on evaluating the scar severity and therapeutic response of keloid. We analyzed 228 spectral data from 71 subjects with keloid scars. The scars were classified into mild (0-3), moderate (4-7) and severe (8-11) according to the Vancouver scar scale. We found that as the severity of the scar increased, collagen concentration and water content increased, and the reduced scattering coefficient at 800 nm and oxygen saturation (SaO2) decreased. Using the DRS system, we found that collagen bundles aligned in a specific direction in keloid scars, but not in normal scars. Water content and SaO2 may be utilized as reliable parameters for evaluating the therapeutic response of keloid. In conclusion, the results obtained here suggest that the DRS has potential as an objective technique with which to evaluate keloid scar severity. In addition, it may be useful as a tool with which to track longitudinal response of scars in response to various therapeutic interventions.

5.
Cytotherapy ; 15(2): 201-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23245953

RESUMO

BACKGROUND AIMS: The purpose of this study was to investigate therapeutic potential of green fluorescent protein expressing porcine embryonic stem (pES/GFP(+)) cells in A rat model of spinal cord injury (SCI). METHODS: Undifferentiated pES/GFP(+) cells and their neuronal differentiation derivatives were transplanted into the contused spinal cord of the Long Evans rat, and in situ development of the cells was determined by using a live animal fluorescence optical imaging system every 15 days. After pES/GFP(+) cell transplantation, the behavior functional recovery of the SCI rats was assessed with the Basso, Beattie, and Bresnahan Locomotor Rating Scale (BBB scale), and the growth and differentiation of the grafted pES/GFP(+) cells in the SCI rats were analyzed by immunohistochemical staining. RESULTS: The relative green fluorescent protein expression level was decreased for 3 months after transplantation. The pES/GFP(+)-derived cells positively stained with neural specific antibodies of anti-NFL, anti-MBP, anti-SYP and anti-Tuj 1 were detected at the transplanted position. The SCI rats grafted with the D18 neuronal progenitors showed a significant functional recovery of hindlimbs and exhibited the highest BBB scale score of 15.20 ± 1.43 at week 24. The SCI rats treated with pES/GFP(+)-derived neural progenitors demonstrated a better functional recovery. CONCLUSIONS: Transplantation of porcine embryonic stem (pES)-derived D18 neuronal progenitors has treatment potential for SCI, and functional behavior improvement of grafted pES-derived cells in SCI model rats suggests the potential for further application of pES cells in the study of replacement medicine and functionally degenerative pathologies.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Embrionárias/transplante , Neurônios/citologia , Traumatismos da Medula Espinal/terapia , Medula Espinal/transplante , Animais , Diferenciação Celular , Modelos Animais de Doenças , Células-Tronco Embrionárias/citologia , Proteínas de Fluorescência Verde/análise , Humanos , Neurônios/fisiologia , Ratos , Medula Espinal/citologia , Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Suínos , Transplante Heterólogo
6.
Cell Reprogram ; 12(4): 447-61, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20698783

RESUMO

This study was conducted to direct porcine embryonic stem (pES) cells differentiating into neural lineages and to investigate therapeutic potential of GFP-expressing pES (pES/GFP(+)) in the rat model of Parkinson's disease (PD). Directed differentiation of pES into neural lineages was induced by suspension culture in medium containing RA, SHH, and FGF combinations without going through embryoid body formation. A high yield of nestin-expressing neural precursors was found in all treatments on day 2 after the 12-day induction. On day 6 after replating, more than 86.2 and 83.4% of the differentiated cells stained positively for NFL and MAP2, respectively. The expression of TH, ChAT, and GABA specific markers were also observed in these NFL-positive neural cells. The undifferentiated pES/GFP(+) cells and their neuronal differentiation derivatives were transplanted into the Sprague-Dawley (SD) rat's brain, and their survival and development was determined by using live animal fluorescence optical imaging system every 15 days. The results showed that fluorescent signals from the injection site of SD rats' brain could be detected through the experimental period of 3 months. The level of fluorescent signal detected in the treatment group was twofold that of the control group. The results of behavior analysis showed that PD rats exhibited stably decreased asymmetric rotations after transplantation with pES/GFP(+)-derived D18 neuronal progenitors. The dopaminergic differentiation of grafted cells in the brain was further confirmed by immunohistochemical staining with anti-TH, anti-DA, and anti-DAT antibodies. These results suggested that the differentiation approach we developed would direct pES cells to differentiate into neural lineages and benefit the development of novel therapeutics involving stem cell transplantation.


Assuntos
Diferenciação Celular , Modelos Animais de Doenças , Células-Tronco Embrionárias/citologia , Neurônios/citologia , Doença de Parkinson/terapia , Transplante de Células-Tronco , Animais , Linhagem da Célula , Células Cultivadas , Dopamina/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Técnicas Imunoenzimáticas , Proteínas de Filamentos Intermediários/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Nestina , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Ratos , Ratos Sprague-Dawley , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA