Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IUBMB Life ; 75(3): 186-195, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34320278

RESUMO

This study tended to clarify the role of miR-126 in non-small cell lung cancer (NSCLC) cell biological behaviors in vitro, containing cell proliferation, migration, invasion, and apoptosis. miRNA expression microarray related to NSCLC was accessed from gene expression omnibus (GEO) database and subjected to differential analysis using the "limma" package. Real-time quantitative PCR was conducted to assess the expression of miR-126 in NSCLC cell lines. wIn vitro experiments including 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), wound healing assay, Transwell, and flow cytometry assay were used for evaluating the effect of miR-126 on cell proliferation, migration, invasion, and apoptosis. Additionally, target mRNA for miR-126 was predicted and further validated by bioinformatics analysis and dual-luciferase reporter assay, respectively. It suggested that miR-126 was significantly down-regulated in NSCLS based on the expression microarray, and similar expression trend was exhibited in cancer cell lines. In the meantime, overexpression of miR-126 was found to result in inhibition of cell proliferation, migration, and invasion while promotion of cell apoptosis, with reductions in protein expression of AKT2 and phosphorylated HK2 (p-HK2) as well. AKT2, identified to be a direct target of miR-126 in NSCLC as judged by dual-luciferase reporter assay. Additionally, overexpression of AKT2 was observed to have the ability of elevating p-HK2 protein expression and reversing the effect of miR-126 on NSCLC cell proliferation, migration, and invasion. Given the above findings, we can see that miR-126 exerts its role in NSCLC cell proliferation, migration, invasion, and apoptosis with the aid of AKT2/HK2 axis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , MicroRNAs/genética , Proliferação de Células/genética , Apoptose/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-akt/genética
2.
Curr Mol Pharmacol ; 16(1): 116-123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35260066

RESUMO

PURPOSE: The study aims to explore the regulatory mechanism of miR-129-2-3p underlying esophageal carcinoma (EC) cell progression and generate new ideas for targeted treatment of EC. METHODS: Mature miRNA expression data and total RNA sequencing data of EC in the TCGAESCA dataset were utilized to explore differentially expressed miRNAs (DEmiRNAs). StarBase database was then utilized to predict targets of miRNA. MiR-129-2-3p and DNMT3B expression in EC cell lines was assayed through qRT-PCR and Western blot. CCK-8, scratch healing, and transwell assays were conducted to assess the impact of miR-129-2-3p on EC cell phenotypes. In addition, a dual-luciferase assay was completed to identify the binding relationship between DNMT3B and miR-129-2-3p. RESULTS: MiR-129-2-3p was noticeably less expressed in EC cell lines, while DNMT3B was highly expressed. MiR-129-2-3p could bind to DNMT3B. Furthermore, in vitro functional experiments uncovered that overexpressed miR-129-2-3p repressed EC cell progression while further overexpressing DNMT3B would restore the above inhibitory effect. CONCLUSION: MiR-129-2-3p is a cancer repressor in EC cells, and it could target DNMT3B, thus hampering the progression of EC cells.


Assuntos
Carcinoma , Neoplasias Esofágicas , MicroRNAs , Humanos , Neoplasias Esofágicas/genética , Linhagem Celular , Proliferação de Células/genética , MicroRNAs/genética
3.
Environ Mol Mutagen ; 63(7): 351-361, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36161731

RESUMO

Lung cancer is primarily responsive for cancer death, and its progression is aggressively affected by copy number variation (CNV). Through bioinformatics approach, a ceRNA network of CNV-driven lncRNAs in lung squamous cell carcinoma (LUSC) patients was constructed. Data on normal and LUSC tumor tissue from The Cancer Genome Atlas (TCGA)-LUSC dataset were subjected to differential analysis, and differentially expressed lncRNAs (DElncRNAs), DEmiRNAs, and DEmRNAs were obtained. Based on TCGA-LUSC, CNVs of normal and tumor tissue samples were then compared using a Chi-square test, and lncRNAs were intersected based on their CNVs and expression alternation. In combination with the Kruskal-Wallis test, CNV-driven lncRNAs were acquired. Afterwards, miRNAs and mRNAs that interacted with CNV-driven lncRNAs were obtained based on databases (LncBase, starBase, miRDB, mirDIP and TargetScan), DElncRNAs, DEmiRNAs and DEmRNAs, and correlation analysis. The acquired lncRNAs, miRNAs and mRNAs were subjected to Cytoscape software to construct a CNV-driven ceRNA network, which involved 5 lncRNAs (MIR143HG, LINC00702, MIR22HG, RP11-180 N14.1, RP11-473 M20.9), 6 miRNAs (miR-3200-3p, miR-1301-3p, miR-93-3p, miR-96-5p, miR-96-5p, miR-130b-5p, miR-205-5p) and 80 mRNAs. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses indicated that downstream mRNAs were mainly correlated with blood vessel development and T cell-mediated immunity. In summary, we devoted to analyzing CNV-related lncRNAs, mRNAs, and miRNAs in LUSC, thus clarifying 5 lncRNAs that may influence the malignant progression of LUSC. The ceRNA network regulated by these lncRNAs may be the novel pathogenesis of LUSC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Variações do Número de Cópias de DNA/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Pulmão/patologia , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia
4.
Mutat Res ; 825: 111792, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35939884

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is featured in high morbidity and mortality. Aberrant activation of the histone methyltransferase EZH2 has close association with cancer progression. This research aimed to deeply dive into the role and possible molecular mechanisms of EZH2 and its downstream genes in malignant progression and DNA damage repair of LUAD cells. METHODS: Expression of EZH2 in LUAD cells was analyzed by qRT-PCR, and the effects of EZH2 on proliferation, and apoptosis of LUAD cells were examined by CCK-8, colony formation and flow cytometry assays. The downstream targets of EZH2 were predicted by bioinformatics analysis. Then, the targeting relationship between EZH2 and RAI2 was examined by CHIP and luciferase reporter assays. Rescue assay were used to further validate the effect of EZH2/RAI2 on the malignant progression of LUAD cells. The expression levels of EZH2, RAI2 and p53 were examined by Western blot. RESULTS: Upregulation of EZH2 was identified in LUAD tissues and cells. RAI2 was a downstream target gene of EZH2, and the two were negatively correlated. Silencing EZH2 suppressed proliferation of LUAD cells, promoted expression of p53, cell cycle arrest and apoptosis. While silencing RAI2 could reverse the above-mentioned effects caused by EZH2 silencing. CONCLUSION: These results demonstrated that EZH2 promoted malignant progression and DNA damage repair of LUAD cells by targeting and negatively regulating RAI2.


Assuntos
Adenocarcinoma de Pulmão , Proteína Potenciadora do Homólogo 2 de Zeste , Peptídeos e Proteínas de Sinalização Intercelular , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Dano ao DNA/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Pulmonares/metabolismo , Proteína Supressora de Tumor p53/genética
5.
Rice (N Y) ; 14(1): 68, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34264425

RESUMO

BACKGROUND: In rice, panicle apical abortion is a common phenomenon that usually results in a decreased number of branches and grains per panicle, and consequently a reduced grain yield. A better understanding of the molecular mechanism of panicle abortion is thus critical for maintaining and increasing rice production. RESULTS: We reported a new rice mutant panicle apical abortion 3 (paa3), which exhibited severe abortion of spikelet development on the upper part of the branches as well as decreased grain size over the whole panicle. Using mapping-based clone, the PAA3 was characterized as the LOC_ Os04g56160 gene, encoding an H+-ATPase. The PAA3 was expressed highly in the stem and panicle, and its protein was localized in the plasma membrane. Our data further showed that PAA3 played an important role in maintaining normal panicle development by participating in the removal of reactive oxygen species (ROS) in rice. CONCLUSIONS: Our studies suggested that PAA3 might function to remove ROS, the accumulation of which leads to programmed cell death, and ultimately panicle apical abortion and decreased seed size in the paa3 panicle.

6.
Technol Cancer Res Treat ; 20: 1533033820985868, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33455522

RESUMO

OBJECTIVE: We aimed to investigate the mechanism of the regulatory axis of miR-196b/AQP4 underlying the invasion and migration of lung adenocarcinoma (LUAD) cells. METHODS: LUAD miRNA and mRNA expression profiles were downloaded from TCGA database and then differential analysis was used to identify the target miRNA. Target gene for the miRNA was obtained via prediction using 3 bioinformatics databases and intersection with the differentially expressed mRNAs searched from TCGA-LUAD. Then, qRT-PCR and western blot were used to validate the expression of miR-196b and AQP4. Dual-luciferase reporter assay was performed to confirm the targeting relationship between miR-196b and AQP4. Transwell assay was used to investigate the migration and invasion of LUAD cells. RESULTS: MiR-196b was screened out by differential and survival analyses, and the downstream target gene AQP4 was identified. In LUAD, miR-196b was highly expressed while AQP4 was poorly expressed. Besides, overexpression of miR-196b promoted cell invasion and migration, while overexpression of AQP4 had negative effects. Moreover, the results of the dual-luciferase reporter assay suggested that AQP4 was a direct target of miR-196b. In addition, we also found that overexpressing AQP4 could suppress the promotive effect of miR-196b on cancer cell invasion and migration. CONCLUSION: MiR-196b promotes the invasion and migration of LUAD cells by down-regulating AQP4, which helps us find new molecular targeted therapies for LUAD.


Assuntos
Adenocarcinoma de Pulmão/genética , Aquaporina 4/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Interferência de RNA , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Genes Reporter , Humanos
7.
Phys Chem Chem Phys ; 18(15): 9927-34, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-26509958

RESUMO

A multi-ion model taking into account the Stern layer effect and the surface chemistry reactions is developed for the first time to investigate the surface charge properties and electrophoresis of pH-regulated silica nanoparticles (NPs). The applicability of the model is validated by comparing its prediction to the experimental data of the electrophoretic mobility of silica NPs available from the literature. Results show that if the particle size is fixed, the Stern layer effect on the surface charge properties of the NP is notable at high pH and background salt concentration; however, that effect on the particle mobility is significant when pH is around neutrality and the salt concentration is medium high (ca. 0.07 M) because of the double-layer polarization effect. Moreover, if pH and the background salt concentration are fixed, the Stern layer effect on the zeta potential and electrophoretic mobility of the NP becomes more significant for smaller particle size. Neglecting the Stern layer effect could result in the overestimation of the zeta potential, surface charge density, and electrophoretic mobility of a NP on the order of several times.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA