Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEBS Open Bio ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054261

RESUMO

Although most cognitive impairments induced by prolonged alcohol consumption tend to improve within the initial months of abstinence, there is evidence suggesting certain cognitive deficits may persist. This study aimed to investigate the impact of aerobic exercise on learning and memory in alcohol use disorder (AUD) mice following a period of abstinence from alcohol. We also sought to assess the levels of monoamine neurotransmitters in the hippocampus. To this end, we established an AUD mouse model through a two-bottle choice (sucrose fading mode and normal mode) and chronic intermittent alcohol vapor (combined with intraperitoneal injection) and randomly allocated mice into exercise groups to undergo treadmill training. Learning and memory abilities were assessed through the Morris water maze test and spontaneous activity was evaluated using the open field test. The levels of dopamine, norepinephrine, serotonin, and brain-derived neurotrophic factor in the hippocampus were quantified using enzyme-linked immunoassay (ELISA) kits. The findings reveal that after cessation of alcohol consumption, learning and memory abilities in AUD mice did not completely return to normal levels. The observed enhancement of cognitive functions in AUD mice through aerobic exercise may be attributed to restoring levels of monoamine neurotransmitters in the hippocampus, boosting brain-derived neurotrophic factor (BDNF) concentrations, and facilitating an increase in hippocampal mass. These results offer empirical evidence to support aerobic exercise as a viable therapeutic strategy to alleviate cognitive deficits associated with AUD.

2.
J Mass Spectrom ; 57(4): e4821, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35347807

RESUMO

Two unknown solution degradants were found during the dissolution testing in 0.1-M HCl for olmesartan medoxomil (OLM) tablets. The structure of the degradants was identified and characterized by liquid chromatography-ultraviolet (LC-UV), liquid chromatography with tandem mass spectrometry (LC-MS/MS), and nuclear magnetic resonance (NMR) and demonstrated to be cyclization of tetrazole and benzene in the olmesartan (OL) and OLM structures. A series of studies including stress studies, simulation studies, and mechanism-based studies were performed to reveal the potential mechanisms that lead to the formation of the unknown degradants. The study results demonstrated that the degradation was catalyzed with radicals that originated from the metal ions leached from the inner surface of high-performance liquid chromatography (HPLC) glass vials with dissolved oxygen under acidic condition. Prerinsing the glass vials with acidic solution dissolved with EDTA can effectively avoid the generation of such oxidative impurities. The present work provides new insights into the understanding of degradation pathways of OLM, which might support the development of OLM tablets.


Assuntos
Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Íons , Olmesartana Medoxomila , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA