Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.600
Filtrar
1.
ISA Trans ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38755065

RESUMO

As the penetration of renewable energy increases to a large scale and power electronic devices become widespread, power systems are becoming prone to synchronous oscillations (SO). This event has a major impact on the stability of the power grid. The recent research has been mainly concentrated on identifying the parameters of sub-synchronous oscillation. Sub/Super synchronous oscillations (Sub/Sup-SO) simultaneously occur, increasing the difficulty in accurately identify the parameters of SO. This work presents a novel method for parameter identification that effectively handles the Sub/Sup-SO components by utilizing the Rife-Vincent window and discrete Fourier transform (DFT) simultaneously. To mitigate the impact of spectral leakage and the fence effect of DFT, we integrate the tri-spectral interpolation algorithm with the Rife-Vincent window. We use the instantaneous data of the phasor measurement unit (PMU) to identify Sub/Sup-SO-related parameters (Sub/Sup-SO damping ratio, frequency, amplitude and phase). First, the spectrum of the Sub/Sup-SO signals is analyzed after incorporating the Rife-Vincent window, and the characteristics of the Sub/Sup-SO signal are determined. Then, the signal spectrum is identified using a three-point interpolation algorithm, and the damping ratio, amplitude, frequency, and phase of the Sub/Sup-SO signals are obtained. In addition, we consider the identification accuracy of the algorithm under various complex conditions, such as the effect of Sub/Sup-SO parameter variations on parameter identification in the presence of a non-nominal frequency and noise. The proposed algorithm accurately identifies the parameters of multiple Sub/Sup-SO components and two Sub-SO components that are in close proximity. Testing with synthetic and real data demonstrates that the proposed algorithm outperforms existing methods in terms of identification accuracy, identification bandwidth, and adaptability.

2.
ACS Chem Neurosci ; 15(10): 1951-1966, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696478

RESUMO

Aims: the study aimed to (i) use adeno-associated virus technology to modulate parvalbumin (PV) gene expression, both through overexpression and silencing, within the hippocampus of male mice and (ii) assess the impact of PV on the metabolic pathway of glutamate and γ-aminobutyric acid (GABA). Methods: a status epilepticus (SE) mouse model was established by injecting kainic acid into the hippocampus of transgenic mice. When the seizures of mice reached SE, the mice were killed at that time point and 30 min after the onset of SE. Hippocampal tissues were extracted and the mRNA and protein levels of PV and the 65 kDa (GAD65) and 67 kDa (GAD67) isoforms of glutamate decarboxylase were assessed using real-time quantitative polymerase chain reaction and Western blot, respectively. The concentrations of glutamate and GABA were detected with high-performance liquid chromatography (HPLC), and the intracellular calcium concentration was detected using flow cytometry. Results: we demonstrate that the expression of PV is associated with GAD65 and GAD67 and that PV regulates the levels of GAD65 and GAD67. PV was correlated with calcium concentration and GAD expression. Interestingly, PV overexpression resulted in a reduction in calcium ion concentration, upregulation of GAD65 and GAD67, elevation of GABA concentration, reduction in glutamate concentration, and an extension of seizure latency. Conversely, PV silencing induced the opposite effects. Conclusion: parvalbumin may affect the expression of GAD65 and GAD67 by regulating calcium ion concentration, thereby affecting the metabolic pathways associated with glutamate and GABA. In turn, this contributes to the regulation of seizure activity.


Assuntos
Cálcio , Glutamato Descarboxilase , Ácido Glutâmico , Ácido Caínico , Camundongos Transgênicos , Parvalbuminas , Estado Epiléptico , Ácido gama-Aminobutírico , Animais , Parvalbuminas/metabolismo , Glutamato Descarboxilase/metabolismo , Estado Epiléptico/metabolismo , Estado Epiléptico/induzido quimicamente , Ácido gama-Aminobutírico/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Cálcio/metabolismo , Camundongos , Hipocampo/metabolismo , Modelos Animais de Doenças
3.
Nat Commun ; 15(1): 3689, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693165

RESUMO

Human visual neurons rely on event-driven, energy-efficient spikes for communication, while silicon image sensors do not. The energy-budget mismatch between biological systems and machine vision technology has inspired the development of artificial visual neurons for use in spiking neural network (SNN). However, the lack of multiplexed data coding schemes reduces the ability of artificial visual neurons in SNN to emulate the visual perception ability of biological systems. Here, we present an artificial visual spiking neuron that enables rate and temporal fusion (RTF) coding of external visual information. The artificial neuron can code visual information at different spiking frequencies (rate coding) and enables precise and energy-efficient time-to-first-spike (TTFS) coding. This multiplexed sensory coding scheme could improve the computing capability and efficacy of artificial visual neurons. A hardware-based SNN with the RTF coding scheme exhibits good consistency with real-world ground truth data and achieves highly accurate steering and speed predictions for self-driving vehicles in complex conditions. The multiplexed RTF coding scheme demonstrates the feasibility of developing highly efficient spike-based neuromorphic hardware.


Assuntos
Potenciais de Ação , Redes Neurais de Computação , Neurônios , Percepção Visual , Humanos , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Percepção Visual/fisiologia , Modelos Neurológicos
4.
Lancet Reg Health West Pac ; 45: 101050, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38699290

RESUMO

Background: Respiratory syncytial virus (RSV) has posed substantial morbidity and mortality burden to young children and older adults globally. The coronavirus disease 2019 (COVID-19) pandemic was reported to have altered RSV epidemiology and could have important implications for RSV prevention and control strategies. We aimed to compare RSV epidemiology in different phases of the COVID-19 pandemic with the pre-pandemic period by leveraging epidemiological, molecular, and serological data collected from a prospective respiratory pathogen surveillance and serology study. Methods: This study was based on the data during July 1, 2015 to November 30, 2023 from the Respiratory Pathogen Surveillance System (RPSS), a sentinel-hospital based surveillance system of acute respiratory infections consisting of 35 hospitals that represent residents of all ages from all 16 districts in Beijing, China. RSV infection status was tested by RT-PCR and gene sequencing and phylogenetic analysis was conducted among the identified RSV strains. We further supplemented RPSS data with three serology surveys conducted during 2017-2023 that tested RSV IgG levels from serum specimens. RSV detection rate was calculated by calendar month and compared across RSV seasons (defined as the July 1 through June 30 of the following year). RSV IgG positivity proportion was calculated by quarter of the year and was correlated with quarterly aggregated RSV detection rate for understanding the relationship between infection and immunity at the population level. Findings: Overall, a total of 52,931 respiratory specimens were collected and tested over the study period. RSV detection rates ranged from 1.24% (94/7594) in the 2017-2018 season to 2.80% (219/7824) in the 2018-2019 season, and from 1.06% (55/5165) in the 2022-2023 season to 2.98% (147/4938) in the 2021-2022 season during the pre-pandemic and pandemic period, respectively. ON1 and BA9 remained the predominant genotypes during the pandemic period; no novel RSV strains were identified. RSV circulation followed a winter-months seasonal pattern in most seasons. One exception was the 2020-2021 season when an extensive year-round circulation was observed, possibly associated with partial relaxation of non-pharmaceutical interventions (NPIs). The other exception was the 2022-2023 season when very low RSV activity was observed during the usual winter months (possibly due to the concurrent local COVID-19 epidemic), and followed by an out-of-season resurgence in the spring, with RSV detection persisting to the end of the study period (November 2023). During the two seasons above, we noted an age-group related asynchrony in the RSV detection rate; the RSV detection rate in young children remained similar (or even increased with borderline significance; 43/594, 7.24%, and 42/556, 7.55% vs 292/5293, 5.52%; P = 0.10 and P = 0.06, respectively) compared with the pre-pandemic seasons whereas the detection rate in older adults decreased significantly (8/1779, 0.45%, and 3/2021, 0.15% vs 160/10,348, 1.55%; P < 0.001 in two comparisons). Results from serology surveys showed significantly declined RSV IgG positivity in the 2022-2023 season compared to the pre-pandemic seasons (9.32%, 29/311 vs 20.16%, 100/496; P < 0.001); older adults had significantly higher RSV IgG positivity than young children in both pre-pandemic and pandemic periods (P values < 0.001). Interpretation: Our study documented the trajectory of RSV detection along with the changes in the stringency of NPIs, measured IgG positivity, and local COVID-19 epidemics. The findings suggest the interplay between contact patterns, immunity dynamics, and SARS-CoV-2 infection in shaping the RSV epidemics of population of different ages. These findings provide novel insights into the potential drivers of RSV circulating patterns and have important implications for RSV prevention and control strategies. Funding: The High-qualified Public Health Professionals Development Project, Capital's Funds for Health Improvement and Research, and the Public Health Personnel Training Support Program.

5.
Nat Commun ; 15(1): 3796, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714706

RESUMO

The metabolic implications in Alzheimer's disease (AD) remain poorly understood. Here, we conducted a metabolomics study on a moderately aging Chinese Han cohort (n = 1397; mean age 66 years). Conjugated bile acids, branch-chain amino acids (BCAAs), and glutamate-related features exhibited strong correlations with cognitive impairment, clinical stage, and brain amyloid-ß deposition (n = 421). These features demonstrated synergistic performances across clinical stages and subpopulations and enhanced the differentiation of AD stages beyond demographics and Apolipoprotein E ε4 allele (APOE-ε4). We validated their performances in eight data sets (total n = 7685) obtained from Alzheimer's Disease Neuroimaging Initiative (ADNI) and Religious Orders Study and Memory and Aging Project (ROSMAP). Importantly, identified features are linked to blood ammonia homeostasis. We further confirmed the elevated ammonia level through AD development (n = 1060). Our findings highlight AD as a metabolic disease and emphasize the metabolite-mediated ammonia disturbance in AD and its potential as a signature and therapeutic target for AD.


Assuntos
Doença de Alzheimer , Amônia , Metabolômica , Fenótipo , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Amônia/metabolismo , Idoso , Feminino , Masculino , Pessoa de Meia-Idade , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/genética , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Ácidos e Sais Biliares/metabolismo , Idoso de 80 Anos ou mais , Estudos de Coortes
6.
Front Public Health ; 12: 1366339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774044

RESUMO

In order to explore the impact of experience in forest-based health and wellness (FHW) on the stress of middle-aged people, 12 participants aged 35-39 were selected to conduct a 3-day/2-night study on FHW experience in Wencheng, Wenzhou. Huawei bracelets were used to monitor participants' movement, pulse and blood pressure and their mood state was measured before and after the health care experience using the Profile of Mood States (POMS) scale. After the FHW experience, the lowest value of bracelet stress appeared on the second day of the experience for men and women. The total mood disturbance (TMD) decreased by 38.8 points on average, which significantly improved the positive mood and relieved the stress. The decompression effect of the FHW experience showed some variability among individuals. Furthermore, there were gender differences in alleviation of fatigue and puzzlement, which was greater for females than males.


Assuntos
Florestas , Estresse Psicológico , Humanos , Masculino , Feminino , Adulto , China , Afeto , Fatores Sexuais
7.
ACS Chem Neurosci ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776461

RESUMO

Neuroinflammation plays an important role in Alzheimer's disease and primary tauopathies. The aim of the current study was to map [18F]GSK1482160 for imaging of purinergic P2X7R in Alzheimer's disease and primary tauopathy mouse models. Small animal PET was performed using [18F]GSK1482160 in widely used mouse models of Alzheimer's disease (APP/PS1, 5×FAD, and 3×Tg), 4-repeat tauopathy (rTg4510) mice, and age-matched wild-type mice. Increased uptake of [18F]GSK1482160 was observed in the brains of 7-month-old rTg4510 mice compared to wild-type mice and compared to 3-month-old rTg4510 mice. A positive correlation between hippocampal tau [18F]APN-1607 and [18F]GSK1482160 uptake was found in rTg4510 mice. No significant differences in the uptake of [18F]GSK1482160 was observed for APP/PS1 mice, 5×FAD mice, or 3×Tg mice. Immunofluorescence staining further indicated the distribution of P2X7Rs in the brains of 7-month-old rTg4510 mice with accumulation of tau inclusion. These findings provide in vivo imaging evidence for an increased level of P2X7R in the brains of tauopathy mice.

8.
Tomography ; 10(5): 660-673, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38787011

RESUMO

Background: The arterial input function (AIF) is vital for myocardial blood flow quantification in cardiac MRI to indicate the input time-concentration curve of a contrast agent. Inaccurate AIFs can significantly affect perfusion quantification. Purpose: When only saturated and biased AIFs are measured, this work investigates multiple ways of leveraging tissue curve information, including using AIF + tissue curves as inputs and optimizing the loss function for deep neural network training. Methods: Simulated data were generated using a 12-parameter AIF mathematical model for the AIF. Tissue curves were created from true AIFs combined with compartment-model parameters from a random distribution. Using Bloch simulations, a dictionary was constructed for a saturation-recovery 3D radial stack-of-stars sequence, accounting for deviations such as flip angle, T2* effects, and residual longitudinal magnetization after the saturation. A preliminary simulation study established the optimal tissue curve number using a bidirectional long short-term memory (Bi-LSTM) network with just AIF loss. Further optimization of the loss function involves comparing just AIF loss, AIF with compartment-model-based parameter loss, and AIF with compartment-model tissue loss. The optimized network was examined with both simulation and hybrid data, which included in vivo 3D stack-of-star datasets for testing. The AIF peak value accuracy and ktrans results were assessed. Results: Increasing the number of tissue curves can be beneficial when added tissue curves can provide extra information. Using just the AIF loss outperforms the other two proposed losses, including adding either a compartment-model-based tissue loss or a compartment-model parameter loss to the AIF loss. With the simulated data, the Bi-LSTM network reduced the AIF peak error from -23.6 ± 24.4% of the AIF using the dictionary method to 0.2 ± 7.2% (AIF input only) and 0.3 ± 2.5% (AIF + ten tissue curve inputs) of the network AIF. The corresponding ktrans error was reduced from -13.5 ± 8.8% to -0.6 ± 6.6% and 0.3 ± 2.1%. With the hybrid data (simulated data for training; in vivo data for testing), the AIF peak error was 15.0 ± 5.3% and the corresponding ktrans error was 20.7 ± 11.6% for the AIF using the dictionary method. The hybrid data revealed that using the AIF + tissue inputs reduced errors, with peak error (1.3 ± 11.1%) and ktrans error (-2.4 ± 6.7%). Conclusions: Integrating tissue curves with AIF curves into network inputs improves the precision of AI-driven AIF corrections. This result was seen both with simulated data and with applying the network trained only on simulated data to a limited in vivo test dataset.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Meios de Contraste , Circulação Coronária/fisiologia , Simulação por Computador , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos
9.
ACS Appl Mater Interfaces ; 16(20): 26460-26467, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38713066

RESUMO

Owing to the ionic bond nature of the Pb-I bond, the iodide at the interface of perovskite polycrystalline films was easily lost during the preparation process, resulting in the formation of a large number of iodine vacancy defects. The presence of iodine vacancy defects can cause nonradiative recombination, provide a pathway for iodide migration, and be harmful to the power conversion efficiency (PCE) and stability of organic-inorganic hybrid perovskite solar cells (HPSCs). Here, in order to increase the robustness of iodides at the interface, a strategy to introduce anion binding effects was developed to stabilize the perovskite films. It was demonstrated that the N,N'-diphenylurea (DPU), characterized by high anionic binding constants and a Y-shaped structure, provides a relatively strong hydrogen bond donor site to effectively reduce the iodine loss during film preparation and inhibits iodide migration in the device working condition. As expected, the reduced iodine loss considerably improves the quality of the perovskite films and suppresses nonradiative recombination. The performance of the device after DPU modification was significantly increased, with the PCE rising from 23.65 to 25.01% with huge stability enhancement as well.

10.
Nat Commun ; 15(1): 4157, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755137

RESUMO

Le Chatelier's principle is a basic rule in textbook defining the correlations of reaction activities and specific system parameters (like concentrations), serving as the guideline for regulating chemical/catalytic systems. Here we report a model system breaking this constraint in O2 electroreduction in mixed dioxygen. We unravel the central role of creating single-zinc vacancies in a crystal structure that leads to enzyme-like binding of the catalyst with enhanced selectivity to O2, shifting the reaction pathway from Langmuir-Hinshelwood to an upgraded triple-phase Eley-Rideal mechanism. The model system shows minute activity alteration of H2O2 yields (25.89~24.99 mol gcat-1 h-1) and Faradaic efficiencies (92.5%~89.3%) in the O2 levels of 100%~21% at the current density of 50~300 mA cm-2, which apparently violate macroscopic Le Chatelier's reaction kinetics. A standalone prototype device is built for high-rate H2O2 production from atmospheric air, achieving the highest Faradaic efficiencies of 87.8% at 320 mA cm-2, overtaking the state-of-the-art catalysts and approaching the theoretical limit for direct air electrolysis (~345.8 mA cm-2). Further techno-economics analyses display the use of atmospheric air feedstock affording 21.7% better economics as comparison to high-purity O2, achieving the lowest H2O2 capital cost of 0.3 $ Kg-1. Given the recent surge of demonstrations on tailoring chemical/catalytic systems based on the Le Chatelier's principle, the present finding would have general implications, allowing for leveraging systems "beyond" this classical rule.

11.
J Am Chem Soc ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767459

RESUMO

Bicyclo[1.1.0]butane-containing compounds feature a unique chemical reactivity, trigger "strain-release" reaction cascades, and provide novel scaffolds with considerable utility in the drug discovery field. We report the synthesis of new bicyclo[1.1.0]butane-linked heterocycles by a nucleophilic addition of bicyclo[1.1.0]butyl anions to 8-isocyanatoquinoline, or, alternatively, iminium cations derived from quinolines and pyridines. The resulting bicyclo[1.1.0]butanes are converted with high regioselectivity to unprecedented bridged heterocycles in a rhodium(I)-catalyzed annulative rearrangement. The addition/rearrangement process tolerates a surprisingly large range of functional groups. Subsequent chemo- and stereoselective synthetic transformations of urea, alkene, cyclopropane, and aniline moieties of the 1-methylene-5-azacyclopropa[cd]indene scaffolds provide several additional new heterocyclic building blocks. X-ray structure-validated quantum mechanical DFT calculations of the reaction pathway indicate the intermediacy of rhodium carbenoid and metallocyclobutane species.

12.
BMC Vet Res ; 20(1): 204, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755662

RESUMO

Actinobacillus pleuropneumoniae (APP) causes porcine pleuropneumonia (PCP), which is clinically characterized by acute hemorrhagic, necrotizing pneumonia, and chronic fibrinous pneumonia. Although many measures have been taken to prevent the disease, prevention and control of the disease are becoming increasingly difficult due to the abundance of APP sera, weak vaccine cross-protection, and increasing antibiotic resistance in APP. Therefore, there is an urgent need to develop novel drugs against APP infection to prevent the spread of APP. Naringin (NAR) has been reported to have an excellent therapeutic effect on pulmonary diseases, but its therapeutic effect on lung injury caused by APP is not apparent. Our research has shown that NAR was able to alleviate APP-induced weight loss and quantity of food taken and reduce the number of WBCs and NEs in peripheral blood in mice; pathological tissue sections showed that NAR was able to prevent and control APP-induced pathological lung injury effectively; based on the establishment of an in vivo/in vitro model of APP inflammation, it was found that NAR was able to play an anti-inflammatory role through inhibiting the MAPK/NF-κB signaling pathway and exerting anti-inflammatory effects; additionally, NAR activating the Nrf2 signalling pathway, increasing the secretion of antioxidant enzymes Nqo1, CAT, and SOD1, inhibiting the secretion of oxidative damage factors NOS2 and COX2, and enhancing the antioxidant stress ability, thus playing an antioxidant role. In summary, NAR can relieve severe lung injury caused by APP by reducing excessive inflammatory response and improving antioxidant capacity.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Lesão Pulmonar Aguda , Flavanonas , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , NF-kappa B , Animais , Actinobacillus pleuropneumoniae/efeitos dos fármacos , Flavanonas/uso terapêutico , Flavanonas/farmacologia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/tratamento farmacológico , Camundongos , NF-kappa B/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Feminino , Proteínas de Membrana , Heme Oxigenase-1
13.
Sci Total Environ ; : 173327, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38761930

RESUMO

A near-explicit mechanism, the master chemical mechanism (MCMv3.3.1), coupled with the Community Multiscale Air Quality (CMAQ) model (CMAQ-MCM-SOA), was applied to investigate the characteristics of secondary organic aerosol (SOA) during a pollution event in the Yangtze River Delta (YRD) region in summer 2018. Model performances in predicting explicit volatile organic compounds (VOCs), organic aerosol (OA), secondary organic carbon (SOC), and other related pollutants in Taizhou, as well as ozone (O3) and fine particulate matter (PM2.5) in multiple cities in this region, were evaluated against observations and model predictions by the CMAQ model coupled with a lumped photochemical mechanism (SAPRC07tic, S07). MCM and S07 exhibited similar performances in predicting gaseous species, while MCM better captured the observed PM2.5 and inorganic aerosols. Both models underpredicted OA concentrations. When excluding data during biomass burning events, SOC concentrations were underpredicted by the CMAQ-MCM-SOA model (-28.4 %) and overpredicted by the CMAQ-S07 model (134.4 %), with better agreement with observations in the trend captured by the CMAQ-MCM-SOA model. Dicarbonyl SOA accounted for a significant fraction of total SOA in the YRD, while organic nitrates originating from aromatics were the most abundant species contributing to the SOA formation from gas-particle partitioning. The oxygen-to­carbon ratio (O/C) for SOA and OA were 0.68-0.75 and 0.20-0.65, respectively, indicating a higher oxidation state in the areas influenced by biogenic emissions. Finally, the phase state of SOA was examined by calculating the glass transition temperature (Tg) based on its molecular composition. It was found that semi-solid state characterized SOA in the YRD, which could potentially impact their chemical transformation and lifetimes along with those of their precursors.

14.
Cancer Lett ; 591: 216892, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621459

RESUMO

Non-small cell lung cancer (NSCLC) is a leading cause of mortality worldwide and requires effective treatment strategies. Recently, the development of a novel multiple-target tyrosine kinase inhibitor, anlotinib, has drawn increasing attention, especially it shows advantages when combined with PD-1/PD-L1 blockade. However, the mechanism by which anlotinib improves immunotherapy and remodeling of the tumor microenvironment remains unclear. In this study, we found that anlotinib combined with PD-1 blockade significantly inhibited tumor growth and reduced tumor weight in a lung cancer xenograft model compared to any single treatment. Both immunofluorescence and flow cytometry analyses revealed that anlotinib induced a CD8+ T cell dominated tumor microenvironment, which might account for its improved role in immunotherapy. Further investigations showed that CCL5-mediated CD8+ T cell recruitment plays a critical role in anlotinib and PD-1 blockade strategies. The depletion of CD8+ T cells abrogated this process. In conclusion, our findings showed that the combination of anlotinib and PD-1 blockade produced promising effects in the treatment of lung cancer, and that the induction of CCL5-mediced CD8+ T cell recruitment by anlotinib provided a novel mechanism of action.


Assuntos
Antígeno B7-H1 , Linfócitos T CD8-Positivos , Quimiocina CCL5 , Indóis , Neoplasias Pulmonares , Receptor de Morte Celular Programada 1 , Quinolinas , Microambiente Tumoral , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Quinolinas/farmacologia , Quinolinas/administração & dosagem , Indóis/farmacologia , Indóis/administração & dosagem , Camundongos , Humanos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Quimiocina CCL5/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/metabolismo , Feminino
15.
Alzheimers Dement ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648354

RESUMO

INTRODUCTION: We investigated the association between white matter hyperintensities (WMH) and regional cortical thickness, amyloid and tau deposition, and synaptic density in the WMH-connected cortex using multimodal images. METHODS: We included 107 participants (59 with Alzheimer's disease [AD]; 27 with mild cognitive impairment; 21 cognitively normal controls) with amyloid beta (Aß) positivity on amyloid positron emission tomography (PET). The cortex connected to WMH was identified using probabilistic tractography. RESULTS: We found that WMH connected to the cortex with more severe regional degeneration as measured by cortical thickness, Aß and tau deposition, and synaptic vesicle glycoprotein 2 A (SV2A) density using 18F-SynVesT-1 PET. In addition, higher ratios of Aß in the deep WMH-connected versus WMH-unconnected cortex were significantly related to lower cognitive scores. Last, the cortical thickness of WMH-connected cortex reduced more than WMH-unconnected cortex over 12 months. DISCUSSION: Our results suggest that WMH may be associated with AD-intrinsic processes of degeneration, in addition to vascular mechanisms. HIGHLIGHTS: We studied white matter hyperintensities (WMHs) and WMH-connected cortical changes. WMHs are associated with more severe regional cortical degeneration. Findings suggest WMHs may be associated with Alzheimer's disease-intrinsic processes of degeneration.

16.
Sheng Li Xue Bao ; 76(2): 346-352, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658383

RESUMO

Programmed death-ligand 1 (PD-L1) is important in maintaining central and peripheral immune tolerance in normal tissues, mediating tumor immune escape and keeping the balance between anti- and pro-inflammatory responses. Inflammation plays an important role in inflammatory lung diseases. This article reviews the research progress and potential clinical value of PD-L1 in inflammatory lung diseases, including acute lung injury, chronic obstructive pulmonary disease, asthma and idiopathic pulmonary fibrosis.


Assuntos
Asma , Antígeno B7-H1 , Doença Pulmonar Obstrutiva Crônica , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Asma/imunologia , Lesão Pulmonar Aguda/imunologia , Inflamação/imunologia , Fibrose Pulmonar Idiopática/imunologia , Fibrose Pulmonar Idiopática/metabolismo , Pneumopatias/imunologia , Pneumopatias/metabolismo , Animais
17.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612855

RESUMO

Odontoblastic differentiation of human stem cells from the apical papilla (hSCAPs) is crucial for continued root development and dentin formation in immature teeth with apical periodontitis (AP). Fat mass and obesity-associated protein (FTO) has been reported to regulate bone regeneration and osteogenic differentiation profoundly. However, the effect of FTO on hSCAPs remains unknown. This study aimed to identify the potential function of FTO in hSCAPs' odontoblastic differentiation under normal and inflammatory conditions and to investigate its underlying mechanism preliminarily. Histological staining and micro-computed tomography were used to evaluate root development and FTO expression in SD rats with induced AP. The odontoblastic differentiation ability of hSCAPs was assessed via alkaline phosphatase and alizarin red S staining, qRT-PCR, and Western blotting. Gain- and loss-of-function assays and online bioinformatics tools were conducted to explore the function of FTO and its potential mechanism in modulating hSCAPs differentiation. Significantly downregulated FTO expression and root developmental defects were observed in rats with AP. FTO expression notably increased during in vitro odontoblastic differentiation of hSCAPs, while lipopolysaccharide (LPS) inhibited FTO expression and odontoblastic differentiation. Knockdown of FTO impaired odontoblastic differentiation, whereas FTO overexpression alleviated the inhibitory effects of LPS on differentiation. Furthermore, FTO promoted the expression of secreted modular calcium-binding protein 2 (SMOC2), and the knockdown of SMOC2 in hSCAPs partially attenuated the promotion of odontoblastic differentiation mediated by FTO overexpression under LPS-induced inflammation. This study revealed that FTO positively regulates the odontoblastic differentiation ability of hSCAPs by promoting SMOC2 expression. Furthermore, LPS-induced inflammation compromises the odontoblastic differentiation of hSCAPs by downregulating FTO, highlighting the promising role of FTO in regulating hSCAPs differentiation under the inflammatory microenvironment.


Assuntos
Lipopolissacarídeos , Osteogênese , Humanos , Animais , Ratos , Ratos Sprague-Dawley , Microtomografia por Raio-X , Inflamação/genética , Proteínas de Ligação ao Cálcio , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética
18.
Mol Psychiatry ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589563

RESUMO

The associations of synaptic loss with amyloid-ß (Aß) and tau pathology measured by positron emission tomography (PET) and plasma analysis in Alzheimer's disease (AD) patients are unknown. Seventy-five participants, including 26 AD patients, 19 mild cognitive impairment (MCI) patients, and 30 normal controls (NCs), underwent [18F]SynVesT-1 PET/MR scans to assess synaptic density and [18F]florbetapir and [18F]MK6240 PET/CT scans to evaluate Aß plaques and tau tangles. Among them, 19 AD patients, 12 MCI patients, and 29 NCs had plasma Aß42/40 and p-tau181 levels measured by the Simoa platform. Twenty-three individuals, 6 AD patients, 4 MCI patients, and 13 NCs, underwent [18F]SynVesT-1 PET/MRI and [18F]MK6240 PET/CT scans during a one-year follow-up assessment. The associations of Aß and tau pathology with cross-sectional and longitudinal synaptic loss were investigated using Pearson correlation analyses, generalized linear models and mediation analyses. AD patients exhibited lower synaptic density than NCs and MCI patients. In the whole cohort, global Aß deposition was associated with synaptic loss in the medial (r = -0.431, p < 0.001) and lateral (r = -0.406, p < 0.001) temporal lobes. Synaptic density in almost all regions was related to the corresponding regional tau tangles independent of global Aß deposition in the whole cohort and stratified groups. Synaptic density in the medial and lateral temporal lobes was correlated with plasma Aß42/40 (r = 0.300, p = 0.020/r = 0.289, p = 0.025) and plasma p-tau 181 (r = -0.412, p = 0.001/r = -0.529, p < 0.001) levels in the whole cohort. Mediation analyses revealed that tau tangles mediated the relationship between Aß plaques and synaptic density in the whole cohort. Baseline tau pathology was positively associated with longitudinal synaptic loss. This study suggested that tau burden is strongly linked to synaptic density independent of Aß plaques, and also can predict longitudinal synaptic loss.

19.
Cell Death Discov ; 10(1): 167, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589400

RESUMO

The neurotoxic α-synuclein (α-syn) oligomers play an important role in the occurrence and development of Parkinson's disease (PD), but the factors affecting α-syn generation and neurotoxicity remain unclear. We here first found that thrombomodulin (TM) significantly decreased in the plasma of PD patients and brains of A53T α-syn mice, and the increased TM in primary neurons reduced α-syn generation by inhibiting transcription factor p-c-jun production through Erk1/2 signaling pathway. Moreover, TM decreased α-syn neurotoxicity by reducing the levels of oxidative stress and inhibiting PAR1-p53-Bax signaling pathway. In contrast, TM downregulation increased the expression and neurotoxicity of α-syn in primary neurons. When TM plasmids were specifically delivered to neurons in the brains of A53T α-syn mice by adeno-associated virus (AAV), TM significantly reduced α-syn expression and deposition, and ameliorated the neuronal apoptosis, oxidative stress, gliosis and motor deficits in the mouse models, whereas TM knockdown exacerbated these neuropathology and motor dysfunction. Our present findings demonstrate that TM plays a neuroprotective role in PD pathology and symptoms, and it could be a novel therapeutic target in efforts to combat PD. Schematic representation of signaling pathways of TM involved in the expression and neurotoxicity of α-syn. A TM decreased RAGE, and resulting in the lowered production of p-Erk1/2 and p-c-Jun, and finally reduce α-syn generation. α-syn oligomers which formed from monomers increase the expression of p-p38, p53, C-caspase9, C-caspase3 and Bax, decrease the level of Bcl-2, cause mitochondrial damage and lead to oxidative stress, thus inducing neuronal apoptosis. TM can reduce intracellular oxidative stress and inhibit p53-Bax signaling by activating APC and PAR-1. B The binding of α-syn oligomers to TLR4 may induce the expression of IL-1ß, which is subsequently secreted into the extracellular space. This secreted IL-1ß then binds to its receptor, prompting p65 to translocate from the cytoplasm into the nucleus. This translocation downregulates the expression of KLF2, ultimately leading to the suppression of TM expression. By Figdraw.

20.
J Anim Sci Biotechnol ; 15(1): 57, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38589950

RESUMO

BACKGROUND: Hesperidin is a citrus flavonoid with anti-inflammatory and antioxidant potential. However, its protective effects on bovine mammary epithelial cells (bMECs) exposed to oxidative stress have not been elucidated. RESULTS: In this study, we investigated the effects of hesperidin on H2O2-induced oxidative stress in bMECs and the underlying molecular mechanism. We found that hesperidin attenuated H2O2-induced cell damage by reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels, increasing catalase (CAT) activity, and improving cell proliferation and mitochondrial membrane potential. Moreover, hesperidin activated the Keap1/Nrf2/ARE signaling pathway by inducing the nuclear translocation of Nrf2 and the expression of its downstream genes NQO1 and HO-1, which are antioxidant enzymes involved in ROS scavenging and cellular redox balance. The protective effects of hesperidin were blocked by the Nrf2 inhibitor ML385, indicating that they were Nrf2 dependent. CONCLUSIONS: Our results suggest that hesperidin could protect bMECs from oxidative stress injury by activating the Nrf2 signaling pathway, suggesting that hesperidin as a natural antioxidant has positive potential as a feed additive or plant drug to promote the health benefits of bovine mammary.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA