RESUMO
INTRODUCTION: Although the disclosure of medical errors is an integral component of medical ethics, it remains inconsistent in practice worldwide. Despite various explanations of why healthcare professionals reveal their mistakes to patients, comprehensive comparisons and evaluations of this topic remain lacking. The objective of this review is to evaluate the experience of medical error disclosure among medical professionals who have been involved in such errors. METHODS AND ANALYSIS: This work will focus on studies involving medical professionals from various countries who work in hospital settings and have obtained an understanding of and firsthand experience with medical error disclosure. This review will include qualitative studies. Studies published in databases such as PubMed, Embase, EBSCO, OVID, Web of Science, ScienceDirect, China National Knowledge Infrastructure, Wanfang Data and Cochrane Library from 1 January 2000 to 30 April 2024 will be searched as part of this research. Additionally, OpenGrey will be searched manually to obtain supplementary information. The search will be conducted starting in May 2024 and will include both Chinese-language and English-language literature. The systematic review will follow the Joanna Briggs Institute's (JBI) methodology for systematic reviews of qualitative evidence and use the JBI System for the Unified Management, Assessment and Review of Information online program. Study authenticity will be investigated via the Qualitative Research Authenticity Evaluation Tool provided by the JBI Evidence-Based Health Care Centre, and data extraction will be performed via the Qualitative Assessment and Review Instrument data extraction tool. The results will be integrated via a pooled integration methodology and evaluated in terms of reliability via the ConQual qualitative systematic evaluation evidence grading tool. ETHICS AND DISSEMINATION: Ethical approval is not required for the study because the review will be based on pre-existing data available in the literature. The results of this systematic review will be submitted to peer-reviewed journals and presented at relevant conferences. PROSPERO REGISTRATION NUMBER: CRD42024494360.
Assuntos
Erros Médicos , Pesquisa Qualitativa , Projetos de Pesquisa , Revisões Sistemáticas como Assunto , Humanos , Erros Médicos/ética , Pessoal de Saúde/ética , Revelação da Verdade/éticaRESUMO
Extracellular vesicles (EVs) are emerging biomarkers in liquid biopsy that have gained increasing attention in disease diagnosis and prognosis monitoring. Most reported detection methods require the isolation of EVs from complex body liquids, often involving multiple washing steps to remove excess reagents and eliminate background interference. Nonetheless, these methods not only cause the loss of EVs but also result in poor repeatability and prolonged detection duration. The focus on wash-free detection methods is increasing due to the specific ability to avoid the removal of surplus reagents and, in some cases, even the isolation and purification of EVs. Viewing from different methodological perspectives, this review summarizes the recent advances in wash-free detection of EVs, containing aggregation induction, proximity sensing, allosteric probes, phase separation, Roman spectroscopy, field-effect transistor and microcantilever. The pros and cons of each detection strategy are impartially evaluated and this review concludes the prospects for future developments in this field.
RESUMO
MicroRNAs (miRNAs) in dermal interstitial fluid (ISF) have recently been recognized as clinically promising biomarkers for the diagnosis and prognosis of cancer. However, the detection poses significant challenges, primarily due to the low abundance of miRNAs and the limitations of current sampling techniques. To address this issue, we develop novel porous microneedles (PMNs) array-based sensor composed of poly(vinyl alcohol) porous hydrogel and DNA-templated silver nanoclusters (AgNCs) to facilitate the enrichment and highly sensitive detection of ISF miRNA. Leveraging the capillary action facilitated by its unique porous structure and the swelling properties of the hydrogel, the PMNs array can efficiently extract 2.7 ± 0.3 mg of ISF within 5 min. Additionally, the interconnected pores within the PMNs array contribute to an increased specific surface area, thereby offering a convenient platform for the decoration of DNA-templated AgNCs. The immobilized large amount of AgNCs effectively capture the target miRNA from the extracted ISF, resulting in miRNA-induced fluorescence quenching of AgNCs. Subsequently, the introduction of the duplex-specific nuclease leads to the cleavage of DNA in DNA-RNA heteroduplexes, which release miRNA to interact with other AgNCs. This process of target recycling triggers a further reduction in fluorescence intensity, thereby enabling sensitive detection of the low-abundant miRNA down to 1.6 pM. Both in vitro and in vivo experiments validate the efficacy of the AgNCs immobilized PMNs array for the detection of miRNA biomarkers in ISF within minutes. These results indicate that the proposed PMNs array-based sensor holds great potential for the development of noninvasive personalized diagnostic strategies.
Assuntos
Líquido Extracelular , Nanopartículas Metálicas , MicroRNAs , Agulhas , Prata , Prata/química , MicroRNAs/análise , Porosidade , Líquido Extracelular/química , Nanopartículas Metálicas/química , Animais , Humanos , Técnicas Biossensoriais/métodos , DNA/químicaRESUMO
BACKGROUND: Antibiotic residues in food chain have raised concerns regarding their toxicity and involvement in antimicrobial resistance. However, most existing antibiotic biosensors are primarily applicable to liquid food samples. Given the complex matrix characteristics of foods, there is an urgent need for the development of effective antibiotic detection platforms that exhibit high universality and flexibility. Porous microneedles (PMN) are microdevice structures with needle-like shapes and microscale pores throughout their composition, which facilitate rapid sampling. Consequently, the integration of PMN with biosensors holds significant promise for the detection of antibiotic residues in complex food samples. RESULTS: In this study, hydrogel-forming PMN are fabricated by leveraging the oxygen-production capacity of thylakoid to generate bubbles and form porous structures. These PMN are then integrated with a fluorescence aptasensor for the quantification of the antibiotic netilmicin. The aptasensor consists of a netilmicin (NET) aptamer with stem loop and hairpin structure, which facilitated the binding of SYBR Green I to produce a fluorescent signal. In the presence of NET, the complete binding between NET and the aptamer results in a reduction of fluorescence intensity, thereby generating a detectable signal change for the detection of NET. Utilizing capillary action accelerate fluid extraction (2.9 times faster than nonporous microneedles) and a large specific surface area (5.1072 m2/g) conducive to aptasensor adsorb, the PMN achieve efficient capture and quantification of antibiotic with limits of detection and quantitation of 5.99 nM and 19.8 nM, respectively. SIGNIFICANCE: Porous microneedles with tunable porosity and desirable mechanical properties are successfully fabricated. The integration of PMN with aptasensor enable the efficient detection of netilmicin in fish, milk and river water samples, demonstrating high recovery rates. The PMN represent potential tools for the convenient and rapid detection of antibiotic residues within complex food matrices, thereby enhancing food safety monitoring.
Assuntos
Antibacterianos , Agulhas , Antibacterianos/análise , Porosidade , Tilacoides/química , Técnicas Biossensoriais , Aptâmeros de Nucleotídeos/química , Animais , Contaminação de Alimentos/análise , Resíduos de Drogas/análise , Limite de Detecção , Química Verde , Análise de Alimentos/métodos , Análise de Alimentos/instrumentaçãoRESUMO
Rapid, on-site measurement of ppm-level humidity in real time remains a challenge. In this work, we fabricated a few micrometer thick, ß-ketoenamine-linked covalent organic framework (COF) membrane via interfacially confined condensation of 1,3,5-tris-(4-aminophenyl)triazine (TTA) with 1,3,5-tri-formylphloroglucinol (TP). Based on the super-sensitive and reversible response of the COF membrane to water vapor, we developed a high-performance film-based fluorescence humidity sensor, depicting unprecedented detection limit of 0.005 ppm, fast response/recovery (2.2 s/2.0 s), and a detection range from 0.005 to 100 ppm. Remarkably, more than 7,000-time continuous tests showed no observable change in the performance of the sensor. The applicability of the sensor was verified by on-site and real-time monitoring of humidity in a glovebox. The superior performance of the sensor was ascribed to the highly porous structure and unique affinity of the COF membrane to water molecules as they enable fast mass transfer and efficient utilization of the water binding sites. Moreover, based on the remarkable moisture driven deformation of the COF membrane and its composition with the known polyimide films, some conceptual actuators were created. This study brings new ideas to the design of ultra-sensitive film-based fluorescent sensors (FFSs) and high-performance actuators.
RESUMO
Oxygen therapy is widely used in clinical practice; however, prolonged hyperoxia exposure may result in hyperoxic acute lung injury (HALI). In this study, we investigated the role of FAM134B in hyperoxia-induced apoptosis, cell proliferation, and epithelial-to-mesenchymal transition (EMT) using RLE-6TN cells and rat lungs. We also studied the effect of CeO2-NPs on RLE-6TN cells and lungs following hyperoxia exposure. FAM134B was inhibited in RLE-6TN cells and rat lungs following hyperoxia exposure. Overexpressing FAM134B promoted cell proliferation, and reduced EMT and apoptosis following hyperoxia exposure. FAM134B activation increased ER-phagy, decreased apoptosis, improved lung structure damage, and decreased collagen fiber deposition to limit lung injury. These effects could be reversed by PI3K/AKT pathway inhibitor LY294002. Additionally, CeO2-NPs protected RLE-6TN cells and lung damage following hyperoxia exposure by ameliorating impaired ER-phagy. Therefore, FAM134B restoration is a potential therapeutic target for the HALI. Moreover, CeO2-NPs can be used for the treatment of HALI.
RESUMO
Myocardial infarction (MI) and the ensuing heart failure (HF) remain the main cause of morbidity and mortality worldwide. One of the strategies to combat MI and HF lies in the ability to accurately predict the onset of these disorders. Alterations in mitochondrial homeostasis have been reported to be involved in the pathogenesis of various cardiovascular diseases (CVDs). In this regard, perturbations to mitochondrial dynamics leading to impaired clearance of dysfunctional mitochondria have been previously established to be a crucial trigger for MI/HF. In this study, we found that MI patients could be classified into three clusters based on the expression levels of mitophagy-related genes and consensus clustering. We identified a mitophagy-related diagnostic 5-genes signature for MI using support vector machines-Recursive Feature Elimination (SVM-RFE) and random forest, with the area under the ROC curve (AUC) value of the predictive model at 0.813. Additionally, the single-cell transcriptome and pseudo-time analyses showed that the mitoscore was significantly upregulated in macrophages, endothelial cells, pericytes, fibroblasts and monocytes in patients with ischemic cardiomyopathy, while sequestosome 1 (SQSTM1) exhibited remarkable increase in the infarcted (ICM) and non-infarcted (ICMN) myocardium samples dissected from the left ventricle compared with control samples. Lastly, through analysis of peripheral blood from MI patients, we found that the expression of SQSTM1 is positively correlated with troponin-T (P < 0.0001, R = 0.4195, R2 = 0.1759). Therefore, this study provides the rationale for a cell-specific mitophagy-related gene signature as an additional supporting diagnostic for CVDs.
Assuntos
Perfilação da Expressão Gênica , Mitofagia , Infarto do Miocárdio , Valor Preditivo dos Testes , Transcriptoma , Mitofagia/genética , Humanos , Infarto do Miocárdio/genética , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Masculino , Pessoa de Meia-Idade , Feminino , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/genética , Idoso , Máquina de Vetores de Suporte , Marcadores Genéticos , Estudos de Casos e ControlesRESUMO
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. The Journal was alerted to legal and ethical concerns regarding the publication of this paper. Neither the use of the copyrighted Jefferson Scale of Empathy© nor the adaptation was authorized by the copyright holders at Thomas Jefferson University. The Editor-in-Chief has therefore determined that the paper should be retracted. The corresponding author acknowledged the notice reporting the outcome of this retraction.
RESUMO
Colorectal cancer (CRC) is a common malignant tumor in the gastrointestinal tract. Changes in amino acid metabolites have been implicated in tumorigenesis and disease progression. Biomarkers on the basis of chiral amino acids, especially D-amino acids, have not been established for early diagnosis of CRC. Quantification of chiral amino acids, especially very low concentrations of endogenous D-amino acids, is technically challenging. We report here the quantification of L- and D-amino acids in urine samples collected from 115 CRC patients and 155 healthy volunteers, using an improved method. The method of chiral labeling, liquid chromatography, and tandem mass spectrometry enabled separation and detection of 28 amino acids (14 L-amino acids, 13 D-amino acids and Gly). Orthogonal partial least squares discriminant analysis identified 14 targeted variables among these chiral amino acids that distinguished the CRC from the healthy controls. Binary logistic regression analysis revealed that D-α-aminobutyric acid (D-AABA), L-alanine (L-Ala), D-alanine (D-Ala), D-glutamine (D-Gln) and D-serine (D-Ser) could be potential biomarkers for CRC. A receiver operating characteristic curve analysis of combined multi-variables contributed to an area under the curve (AUC) of 0.995 with 98.3 % sensitivity and 96.8 % specificity. A model constructed with D-AABA, D-Ala, D-Gln, and D-Ser achieved an AUC of 0.988, indicating important contributions of D-amino acids to the association with CRC. Further analysis also demonstrated that the metabolic aberration was associated with age and the development of CRC, D-methionine (D-Met) was decreased in CRC patients with age over 50, and D/L-Gln in patients at stage IV was higher than patients at stage I. This study provides the signature of D-amino acids in urine samples and offers a promising strategy for developing non-invasive diagnosis of CRC.
Assuntos
Aminoácidos , Biomarcadores Tumorais , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/urina , Aminoácidos/urina , Biomarcadores Tumorais/urina , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Adulto , Estereoisomerismo , Reprodutibilidade dos Testes , Modelos Lineares , Estudos de Casos e Controles , Espectrometria de Massa com Cromatografia LíquidaRESUMO
Purpose: Limited investigation is available on the correlation between environmental phenols' exposure and estimated glomerular filtration rate (eGFR). Our target is established a robust and explainable machine learning (ML) model that associates environmental phenols' exposure with eGFR. Methods: Our datasets for constructing the associations between environmental phenols' and eGFR were collected from the National Health and Nutrition Examination Survey (NHANES, 2013-2016). Five ML models were contained and fine-tuned to eGFR regression by phenols' exposure. Regression evaluation metrics were used to extract the limitation of the models. The most effective model was then utilized for regression, with interpretation of its features carried out using shapley additive explanations (SHAP) and the game theory python package to represent the model's regression capacity. Results: The study identified the top-performing random forest (RF) regressor with a mean absolute error of 0.621 and a coefficient of determination of 0.998 among 3,371 participants. Six environmental phenols with eGFR in linear regression models revealed that the concentrations of triclosan (TCS) and bisphenol S (BPS) in urine were positively correlated with eGFR, and the correlation coefficients were ß = 0.010 (p = 0.026) and ß = 0.007 (p = 0.004) respectively. SHAP values indicate that BPS (1.38), bisphenol F (BPF) (0.97), 2,5-dichlorophenol (0.87), TCS (0.78), BP3 (0.60), bisphenol A (BPA) (0.59) and 2,4-dichlorophenol (0.47) in urinary contributed to the model. Conclusion: The RF model was efficient in identifying a correlation between phenols' exposure and eGFR among United States NHANES 2013-2016 participants. The findings indicate that BPA, BPF, and BPS are inversely associated with eGFR.
Assuntos
Taxa de Filtração Glomerular , Aprendizado de Máquina , Inquéritos Nutricionais , Fenóis , Humanos , Estudos Transversais , Feminino , Masculino , Taxa de Filtração Glomerular/efeitos dos fármacos , Pessoa de Meia-Idade , Exposição Ambiental , AdultoRESUMO
OBJECTIVES: Endothelial-to-mesenchymal transition (EndoMT) is a significant biological phenomenon wherein endothelial cells undergo a loss of their endothelial traits and progressively acquire mesenchymal characteristics. Consequently, this transformation leads to both a compromised ability to maintain lumen permeability and alterations in vascular structure, which hampers the preservation of blood-brain barrier integrity. This study aimed to investigate inflammation-induced EndoMT and its etiology, with the goal of impeding the infiltration of peripheral inflammation into the central nervous system. MATERIALS AND METHODS: Lipolysaccharide (LPS) was administered intraperitoneally to mice several times to establish a chronic inflammatory model. A cellular inflammatory model was established by LPS in human brain microvascular endothelial cells (HBMECs). The mRNA expressions of inflammatory cytokines interleukin-1ß (IL-1ß) and IL-6 were detected by real-time polymerase chain reaction (PCR). Immunofluorescence staining of platelet endothelial cell adhesion molecule-1 (CD31) and alpha smooth muscle actin (α-SMA) was conducted to assess the level of EndoMT. The expression levels of Occludin, zona occludens protein 1 (ZO-1), Sestrin2, microtubule-associated protein1 light chain 3 (LC3) and inducible nitric oxide synthase (iNOS) were detected by western blotting. RESULTS: LPS treatment induced the downregulation of ZO-1 and Occludin, which was accompanied by the elevated expressions of iNOS, α-SMA, Sestrin2 and LC3-II in the mouse cortex and HBMECs. Mechanistically, the knockdown of Sestrin2 in HBMECs exacerbated the EndoMT induced by LPS treatment, while the overexpression of Sestrin2 inhibited this process. Moreover, the induction of autophagy by rapamycin rescued the EndoMT induced by Sestrin2 knockdown. CONCLUSION: This study revealed that Sestrin2 inhibited endothelial inflammation and EndoMT via enhanced autophagy, which may provide a potential drug target for cerebrovascular inflammatory injury.
Assuntos
Autofagia , Células Endoteliais , Lipopolissacarídeos , Animais , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/administração & dosagem , Camundongos , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Humanos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/fisiologia , Proteínas Nucleares/metabolismo , Inflamação/metabolismo , Modelos Animais de DoençasRESUMO
Platelet-derived extracellular vesicles (PEVs) showing great potential in wound healing have attracted increasing attention recently. Nondestructive isolation and effective utilization strategies are highly conducive for PEVs developing into recognized therapeutic entities. Here, we present an efficient strategy for PEV isolation and bacterial infected wound healing based on self-assembled DNA microflowers. First, DNA microflowers are prepared using rolling circle amplification. Then, the hydrophobic interaction between cholesteryl modified on DNA microflowers and the phospholipid bilayer membrane of PEVs leads to the formation of a network structure with improved mechanical strength and the separation of PEVs from biological samples. Finally, controlled release of PEVs is achieved through bacterial-induced hydrogel degradation. In vitro experiments demonstrate the obtained DNA hydrogel with good cytocompatibility and therapeutic potential. Taken together, the DNA microflower-based hydrogels with bioadhesive, self-healing, tunable mechanical properties and bacteria-responsive behavior offer substantial potential for EV isolation and wound healing.
Assuntos
Plaquetas , DNA , Vesículas Extracelulares , Hidrogéis , Cicatrização , Vesículas Extracelulares/química , Cicatrização/efeitos dos fármacos , DNA/química , Plaquetas/metabolismo , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Animais , CamundongosRESUMO
BACKGROUND: Major depression (MD) is recurrent and devastating mental disease with a high worldwide prevalence. Mounting evidence suggests neuroinflammation triggers cellular immune dysregulation, characterized by increased proportions of circulating monocytes, and T helper 17 cells and proinflammatory cytokines, thereby increasing susceptibility to MD. However, there is ambiguity in the findings of clinical studies that investigate CD4+ T regulatory (Treg) cells in MD. METHODS: The proportion of CD4+ Treg cell from blood mononuclear cells was examined using flow cytometry in healthy controls (HCs: n = 96) and patients with first (FEMD: n = 62) or recurrent (RMD: n = 41) disease episodes of MD at baseline (T0; hospital admission) and after a two-week antidepressant treatment (T14). All participants underwent comprehensive neuropsychological assessments. RESULTS: The initial scores on emotional assessments in patients with MD significantly differed from those of HCs. Both FEMD and RMD patients exhibited a significant decrease in CD4+ Treg cell proportion at baseline compared to HCs. Treg cell proportion rose significantly from T0 to T14 in FEMD patients, who responded to antidepressant therapy, whereas no significant changes were observed in FEMD patients in non-response as well as RMD patients. The improvement of 24-item Hamilton Depression Scale was correlate with changes of Treg cell proportion from T0 to T14 in FEMD patients in response, and the change in Treg cell proportion over a 14-day period exhibited an AUC curve of 0.710. CONCLUSIONS: A decrease in the proportion of CD4+ Treg cells points towards immune system abnormalities in patients with MD. Furthermore, our finding suggests that the immune activation state varies across different stages of depression.
Assuntos
Antidepressivos , Transtorno Depressivo Maior , Linfócitos T Reguladores , Humanos , Transtorno Depressivo Maior/imunologia , Transtorno Depressivo Maior/tratamento farmacológico , Masculino , Feminino , Adulto , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Antidepressivos/uso terapêutico , Pessoa de Meia-Idade , Citometria de FluxoRESUMO
BACKGROUND: Acute respiratory distress syndrome (ARDS) is an acute respiratory disease characterized by bilateral chest radiolucency and severe hypoxemia. Quzhou Fructus Aurantii ethyl acetate extract (QFAEE), which is prepared from the traditional Chinese respiratory anti-inflammatory natural herb Quzhou Fructus Arantii, has the potential to alleviate ARDS. In this work, we aimed to investigate the potential and mechanism underlying the action of QFAEE on ARDS and how QFAEE modulates the STING pathway to reduce type I interferon release to alleviate the inflammatory response. METHODS: Lipopolysaccharide (LPS), a potential proinflammatory stimulant capable of causing pulmonary inflammation with edema after nasal drops, was employed to model ARDS in vitro and in vivo. Under QFAEE intervention, the mechanism of action of QFAEE to alleviate ARDS was explored in this study. TREX1-/- mice were sued as a research model for the activation of the congenital STING signaling pathway. The effect of QFAEE on TREX1-/- mice could explain the STING-targeted effect of QFAEE on alleviating the inflammatory response. Our explorations covered several techniques, Western blot, histological assays, immunofluorescence staining, transcriptomic assays and qRT-PCR to determine the potential mechanism of action of QFAEE in antagonizing the inflammatory response in the lungs, as well as the mechanism of action of QFAEE in targeting the STING signaling pathway to regulate the release of type I interferon. RESULTS: QFAEE effectively alleviates ARDS symptoms in LPS-induced ARDS. We revealed that the mechanism underlying LPS-induced ARDS is the STING-TBK1 signaling pathway and further elucidated the molecular mechanism of QFAEE in the prevention and treatment of ARDS. QFAEE reduced the release of type I interferons by inhibiting the STING-TBK1-IRF3 axis, thus alleviating LPS-induced pneumonia and lung cell death in mice. Another key finding is that activation of the STING pathway by activators or targeted knockdown of the TREX1 gene can also induce ARDS. As expected, QFAEE was found to be an effective protective agent in alleviating ARDS and the antagonistic effect of QFAEE on ARDS was achieved by inhibiting the STING signaling pathway. CONCLUSIONS: The main anti-inflammatory effect of QFAEE was achieved by inhibiting the STING signaling pathway and reducing the release of type I interferons. According to this mechanism of effect, QFAEE can effectively alleviate ARDS and can be considered a potential therapeutic agent. In addition, the STING pathway plays an essential role in the development and progression of ARDS, and it is a potential target for ARDS therapy.
Assuntos
Anti-Inflamatórios , Interferon Tipo I , Lipopolissacarídeos , Proteínas de Membrana , Síndrome do Desconforto Respiratório , Animais , Interferon Tipo I/metabolismo , Camundongos , Anti-Inflamatórios/farmacologia , Proteínas de Membrana/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Humanos , Camundongos Endogâmicos C57BL , Medicamentos de Ervas Chinesas/farmacologia , Extratos Vegetais/farmacologia , Pneumonia/tratamento farmacológico , Pneumonia/induzido quimicamenteRESUMO
The past few decades have witnessed encouraging progress in the development of high-performance film-based fluorescent sensors (FFSs) for detecting explosives, illicit drugs, chemical warfare agents (CWAs), and hazardous volatile organic chemicals (VOCs), among others. Several FFSs have transitioned from laboratory research to real-world applications, demonstrating their practical relevance. At the heart of FFS technology lies the sensing films, which play a crucial role in determining the analytes and the resulting signals. The selection of sensing fluorophores and the fabrication strategies employed in film construction are key factors that influence the fluorescence properties, active-layer structures, and overall sensing behaviors of these films. This review examines the progress and innovations in the research field of FFSs over the past two decades, focusing on advancements in fluorophore design and active-layer structural engineering. It underscores popular sensing fluorophore scaffolds and the dynamics of excited state processes. Additionally, it delves into six distinct categories of film fabrication technologies and strategies, providing insights into their advantages and limitations. This review further addresses important considerations such as photostability and substrate effects. Concluding with an overview of the field's challenges and prospects, it sheds light on the potential for further development in this burgeoning area.
RESUMO
Androgen receptor- (AR-) indifference is a mechanism of resistance to hormonal therapy in prostate cancer (PC). Here we demonstrate that ONECUT2 (OC2) activates resistance through multiple drivers associated with adenocarcinoma, stem-like and neuroendocrine (NE) variants. Direct OC2 gene targets include the glucocorticoid receptor (GR; NR3C1) and the NE splicing factor SRRM4, which are key drivers of lineage plasticity. Thus, OC2, despite its previously described NEPC driver function, can indirectly activate a portion of the AR cistrome through epigenetic activation of GR. Mechanisms by which OC2 regulates gene expression include promoter binding, enhancement of genome-wide chromatin accessibility, and super-enhancer reprogramming. Pharmacologic inhibition of OC2 suppresses lineage plasticity reprogramming induced by the AR signaling inhibitor enzalutamide. These results demonstrate that OC2 activation promotes a range of drug resistance mechanisms associated with treatment-emergent lineage variation in PC and support enhanced efforts to therapeutically target OC2 as a means of suppressing treatment-resistant disease.
Assuntos
Adenocarcinoma , Benzamidas , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Nitrilas , Neoplasias da Próstata , Receptores Androgênicos , Receptores de Glucocorticoides , Masculino , Humanos , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Adenocarcinoma/tratamento farmacológico , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Benzamidas/farmacologia , Linhagem Celular Tumoral , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Feniltioidantoína/análogos & derivados , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Epigênese Genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/tratamento farmacológico , Animais , Linhagem da Célula/genética , CamundongosRESUMO
An aerobic, Gram-stain-negative, motile rod bacterium, designated as SYSU BS000021T, was isolated from a black soil sample in Harbin, Heilongjiang province, China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belongs to the genus Methylobacterium, and showed the highest sequence similarity to Methylobacterium segetis KCTC 62267 T (98.51%) and Methylobacterium oxalidis DSM 24028 T (97.79%). Growth occurred at 20-37â (optimum, 28 °C), pH 6.0-8.0 (optimum, pH 7.0) and in the presence of 0% (w/v) NaCl. Polar lipids comprised of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified aminolipid and one unidentified polar lipid. The major cellular fatty acids (> 5%) were C18:0 and C18:1 ω7c and/or C18:1 ω6c. The predominant respiratory quinone was Q-10. The genomic G + C content was 68.36% based on the whole genome analysis. The average nucleotide identity (≤ 83.5%) and digital DNA-DNA hybridization (≤ 27.3%) values between strain SYSU BS000021T and other members of the genus Methylobacterium were all lower than the threshold values recommended for distinguishing novel prokaryotic species. Based on the results of phenotypic, chemotaxonomic and phylogenetic analyses, strain SYSU BS000021T represents a novel species of the genus Methylobacterium, for which the name Methylobacterium nigriterrae sp. nov. is proposed. The type strain of the proposed novel species is SYSU BS000021T (= GDMCC 1.3814 T = KCTC 8051 T).
Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Methylobacterium , Filogenia , RNA Ribossômico 16S , Microbiologia do Solo , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Ácidos Graxos/química , Methylobacterium/genética , Methylobacterium/classificação , Methylobacterium/isolamento & purificação , China , Hibridização de Ácido Nucleico , Análise de Sequência de DNA , Fosfolipídeos/análiseRESUMO
Most central nervous diseases are accompanied by astrocyte activation. Autophagy, an important pathway for cells to protect themselves and maintain homeostasis, is widely involved in regulation of astrocyte activation. Reactive astrocytes may play a protective or harmful role in different diseases due to different phenotypes of astrocytes. It is an urgent task to clarify the formation mechanisms of inflammatory astrocyte phenotype, A1 astrocytes. Sestrin2 is a highly conserved protein that can be induced under a variety of stress conditions as a potential protective role in oxidative damage process. However, whether Sestrin2 can affect autophagy and involve in A1 astrocyte conversion is still uncovered. In this study, we reported that Sestrin2 and autophagy were significantly induced in mouse hippocampus after multiple intraperitoneal injections of lipopolysaccharide, with the elevation of A1 astrocyte conversion and inflammatory mediators. Knockdown Sestrin2 in C8-D1A astrocytes promoted the levels of A1 astrocyte marker C3 mRNA and inflammatory factors, which was rescued by autophagy inducer rapamycin. Overexpression of Sestrin2 in C8-D1A astrocytes attenuated A1 astrocyte conversion and reduced inflammatory factor levels via abundant autophagy. Moreover, Sestrin2 overexpression improved mitochondrial structure and morphology. These results suggest that Sestrin2 can suppress neuroinflammation by inhibiting A1 astrocyte conversion via autophagy, which is a potential drug target for treating neuroinflammation.
Assuntos
Astrócitos , Autofagia , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Animais , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Camundongos , Masculino , Doenças Neuroinflamatórias/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas Nucleares/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/efeitos dos fármacos , SestrinasRESUMO
BACKGROUND & AIMS: The liver is the main organ of ketogenesis, while ketones are mainly metabolized in peripheral tissues via the critical enzyme 3-oxoacid CoA-transferase 1 (OXCT1). We previously found that ketolysis is reactivated in hepatocellular carcinoma (HCC) cells through OXCT1 expression to promote tumor progression; however, whether OXCT1 regulates antitumor immunity remains unclear. METHODS: To investigate the expression pattern of OXCT1 in HCC in vivo, we conducted multiplex immunohistochemistry experiments on human HCC specimens. To explore the role of OXCT1 in mouse HCC tumor-associated macrophages (TAMs), we generated LysMcreOXCT1f/f (OXCT1 conditional knockout in macrophages) mice. RESULTS: Here, we found that inhibiting OXCT1 expression in tumor-associated macrophages reduced CD8+ T-cell exhaustion through the succinate-H3K4me3-Arg1 axis. Initially, we found that OXCT1 was highly expressed in liver macrophages under steady state and that OXCT expression was further increased in TAMs. OXCT1 deficiency in macrophages suppressed tumor growth by reprogramming TAMs toward an antitumor phenotype, reducing CD8+ T-cell exhaustion and increasing CD8+ T-cell cytotoxicity. Mechanistically, high OXCT1 expression induced the accumulation of succinate, a byproduct of ketolysis, in TAMs, which promoted Arg1 transcription by increasing the H3K4me3 level in the Arg1 promoter. In addition, pimozide, an inhibitor of OXCT1, suppressed Arg1 expression as well as TAM polarization toward the protumor phenotype, leading to decreased CD8+ T-cell exhaustion and slower tumor growth. Finally, high expression of OXCT1 in macrophages was positively associated with poor survival in patients with HCC. CONCLUSIONS: In conclusion, our results demonstrate that OXCT1 epigenetically suppresses antitumor immunity, suggesting that suppressing OXCT1 activity in TAMs could be an effective approach for treating liver cancer. IMPACT AND IMPLICATIONS: The intricate metabolism of liver macrophages plays a critical role in shaping hepatocellular carcinoma progression and immune modulation. Targeting macrophage metabolism to counteract immune suppression presents a promising avenue for hepatocellular carcinoma treatment. Herein, we found that the ketogenesis gene OXCT1 was highly expressed in tumor-associated macrophages (TAMs) and promoted tumor growth by reprogramming TAMs toward a protumor phenotype. Pharmacological targeting or genetic downregulation of OXCT1 in TAMs enhances antitumor immunity and slows tumor growth. Our results suggest that suppressing OXCT1 activity in TAMs could be an effective approach for treating liver cancer.