Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 163: 111938, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38217980

RESUMO

Morphological changes of the nucleus pulposus (NP) cells occur concomitantly as part of the intervertebral disc (IVD) degeneration and excessive mechanical loading has been speculated as a significant key factor for contributing to such morphological changes. Therefore, we hypothesize that stress exerted on NP cells can cause a deformity of nucleus in response. The changes of cell morphology is observed in degenerative nucleus pulposus. One of the reasons for degeneration of NP is due to overloading of NP especially in the obese population. So the nucleus deformity caused by stress/force is of our study interest. To delineate the effects and role of mechanical stress, we developed a 3D assay using hydrogel cultures with a circular hole generated with needle indentation to simulate a local stress concentration along the edge of the hole. A stressed zone, encompassing 100 µm of range from the circular edge, is defined based on stress concentration calculation to enable quantitative analysis against the control zone. Our results demonstrated that the circular hole produces stress-induced morphological changes in NP cells. The tangential elongation of NP cells and their nucleus shape changes in the stressed zone are significantly increased compared to the non-stressed control zone. It is proposed that the cell elongation is a direct response to elevated stress within the stressed zone. Subsequently we found the stress induced morphological changes of the NP cells can be significantly reduced by inhibiting ASIC3. This suggests ASIC3 plays an important role of play in mechano-signaling of NP cells.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Núcleo Pulposo/fisiologia , Células Cultivadas , Canais Iônicos Sensíveis a Ácido
2.
Biochem Biophys Res Commun ; 613: 113-119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35550197

RESUMO

Transcranial ultrasound stimulation is an emerging technique for the development of a non-invasive neuromodulation device for the treatment of various types of neurodegenerations and brain damages. However, there are very few studies that have quantified the optimal ultrasound dosage and the long-term associated effects of transcranial ultrasound treatments of brain diseases. In this study, we used a simple ex vivo hippocampal tissues stimulated by different dosages of ultrasound in combination with different chemical treatments to quantify the required energy for a measurable effect. After determining the most desirable ex vivo stimulation conditions, it was then replicated for the in vivo mouse brains. It was discovered that transcranial ultrasound promoted the increase of Tbr2-expressing neural progenitors in an ASIC1a-dependent manner. Furthermore, such effect was observable at least a week after the initial ultrasound treatments and was not abolished by auditory toxicity.


Assuntos
Encéfalo , Neurônios , Estimulação Acústica/métodos , Animais , Encéfalo/fisiologia , Camundongos , Fosforilação , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA