Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (209)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39072642

RESUMO

Most patients experience postoperative ileus (POI) after surgery, which is associated with increased morbidity, mortality, and hospitalization time. POI is a consequence of mechanical damage during surgery, resulting in disruption of motility in the gastrointestinal tract. The mechanisms of POI are related to aberrant neuronal sensitivity, impaired epithelial barrier function, and increased local inflammation. However, the details remain enigmatic. Therefore, experimental murine models are crucial for elucidating the pathophysiology and mechanism of POI injury and for the development of novel therapies. Here, we introduce a murine model of POI generated via intestinal manipulation (IM) that is similar to clinical surgery; this is achieved by mechanical damage to the small intestine by massaging the abdomen 1-3 times with a cotton swab. IM delayed gastrointestinal transit 24 h after surgery, as assessed by FITC-dextran gavage and fluorescence detection of the segmental digestive tract. Moreover, tissue swelling of the submucosa and immune cell infiltration were investigated by hematoxylin and eosin staining and flow cytometry. Proper pressure of the IM and a hyperemic effect on the intestine are critical for the procedure. This murine model of POI can be utilized to study the mechanisms of intestinal damage and recovery after abdominal surgery.


Assuntos
Modelos Animais de Doenças , Íleus , Complicações Pós-Operatórias , Animais , Íleus/etiologia , Camundongos , Complicações Pós-Operatórias/etiologia , Intestino Delgado , Camundongos Endogâmicos C57BL , Masculino
2.
Small ; 20(27): e2310801, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308086

RESUMO

Lithium-sulfur (Li-S) batteries show extraordinary promise as a next-generation battery technology due to their high theoretical energy density and the cost efficiency of sulfur. However, the sluggish reaction kinetics, uncontrolled growth of lithium sulfide (Li2S), and substantial Li2S oxidation barrier cause low sulfur utilization and limited cycle life. Moreover, these drawbacks get exacerbated at high current densities and high sulfur loadings. Here, a heterostructured WOx/W2C nanocatalyst synthesized via ultrafast Joule heating is reported, and the resulting heterointerfaces contribute to enhance electrocatalytic activity for Li2S oxidation, as well as controlled Li2S deposition. The densely distributed nanoparticles provide abundant binding sites for uniform deposition of Li2S. The continuous heterointerfaces favor efficient adsorption and promote charge transfer, thereby reducing the activation barrier for the delithiation of Li2S. These attributes enable Li-S cells to deliver high-rate performance and high areal capacity. This study provides insights into efficient catalyst design for Li2S oxidation under practical cell conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA