RESUMO
Septic acute kidney injury (AKI) is a fatal disease in the intensive care unit, with ferroptosis playing a crucial role in its pathogenesis. Long non-coding RNA (LncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been implicated in septic-induced AKI inflammation and apoptosis. However, its regulatory role in ferroptosis and underlying mechanisms remain unclear. In vivo and in vitro models of septic AKI were established using cecal ligation and puncture (CLP) and lipopolysaccharide (LPS) challenge, respectively. Serum levels of creatinine (Cr), blood urea nitrogen (BUN), kidney injury molecule-1 (Kim-1), neutrophil gelatinase-associated lipocalin (NGAL), and inflammatory cytokine in kidney tissues were determined by ELISA kits. Histopathological alterations and apoptosis were evaluated by HE staining and TUNEL. Ferroptosis was accessed by measuring MDA, GSH, Fe2+, total and lipid ROS levels, and mitochondrial ultrastructure changes. Target molecular levels were determined using RT-qPCR, Western blotting, and immunofluorescence. Interactions among MALAT1, acyl-CoA synthetase family member 2 (ACSF2) and FUS RNA binding protein (FUS) were validated by RIP and RNA-pull down. MALAT1 level was significantly elevated in both in vivo and in vitro septic AKI models, of which knockdown impeded ferroptosis to alleviate septic AKI. Mechanistically, high MALAT1 expression increased ACSF2 mRNA stability via interaction with FUS. Rescue experiments showed that ACSF2 overexpression partially reversed the ferroptosis inhibition mediated by MALAT1 silencing. MALAT1 induces ferroptosis and exacerbates septic AKI by stabilizing ACSF2 mRNA with the assistance of FUS. These findings provide theoretical evidence for MALAT1 as a potential therapeutic target for septic AKI.
RESUMO
Cardiotoxicity is one of the major obstacles to anthracycline chemotherapy. Anthracycline cardiotoxicity is closely associated with inflammation. Imperatorin (IMP), a furocoumarin ingredient extracted from Angelica dahurica, might have potential activity in preventing anthracycline cardiotoxicity due to its anti-cancer, anti-inflammatory, anti-oxidant, cardioprotective properties. This study aims to reveal the effect of IMP on doxorubicin (DOX)-induced cardiotoxicity and its underlying mechanism. We established a rat model of DOX-induced cardiotoxicity by intraperitoneal injection with DOX (1.25 mg/kg twice weekly for 6 weeks), and found that both IMP (25 mg/kg and 12.5 mg/kg) and dexrazoxane 12.5 mg/kg relieved DOX-induced reductions in heart weight, change in cardiac histopathology, and elevated serum levels of LDH, AST and CK-MB. Moreover, DOX upregulated mRNA levels of NLRP3, CASP1, GSDMD, ASC, IL-1ß and IL-18, elevated protein expressions of NLRP3, ASC, GSDMD-FL, GSDMD-N, procaspase1, caspase1 p20, proIL1ß and IL1ß in heart tissues, as well as increased serum levels of pro-inflammatory cytokines including IL-1ß and IL-18, however both of IMP and dexrazoxane suppressed these alterations. In addition, we carried out neonatal rat cardiomyocytes experiments to confirm the results of the in vivo study. Consistently, pretreatment with IMP 25 µg/mL relieved DOX (1 µg/mL)-induced cardiomyocytes injury, including decreased cell viability and reduced supernatant LDH. IMP inhibited DOX-induced activation of NLRP3 inflammasome in cardiomyocytes. In conclusion, IMP had a protective effect against DOX-induced cardiotoxicity via repressing the activation of NLRP3 inflammasome. These findings suggest that IMP may be a promising alternative or adjunctive drug for the prevention of anthracycline cardiotoxicity.
RESUMO
Background: The increasing incidence and high mortality rate of Candida glabrata infection in ICU patients is an important issue. Therefore, it is imperative to investigate the antifungal susceptibility profiles and epidemiological characteristics in local regions. Methods: Herein, antifungal susceptibility testing was conducted to determine the minimum inhibitory concentrations (MICs) of eight antifungal drugs. Multilocus sequence typing (MLST) was used to study the strain genotype, geographical distribution, and susceptibility to antifungal agents among C. glabrata isolates. The mechanism of echinocandin resistance was explored by sequencing the FKS1 and FKS2 genes (encoding 1,3-ß-D-glucan synthases) of echinocandin-resistant C. glabrata strains. Moreover, we further investigated the clinical manifestations and the various risk factors of patients infected with C. glabrata in the ICU. Results: We selected 234 C. glabrata isolates from 234 patients in the ICU randomly for the follow-up study. Cross-resistance was found among the ICU C. glabrata isolates. Analysis using MLST showed that the genetic diversity among the C. glabrata isolates was low. Furthermore, sequence type showed no correlation with the antifungal resistance profiles, but was associated with geographical distribution. We also revealed novel mutations in FKS1 (S629P) and FKS2 (W1497stop) that mediated high-level echinocandin resistance (MIC >8 µg/mL). More than 14 days' stay in ICU (P=0.007), Acute Physiology and Chronic Health Evaluation II (APACHE-II) score (P=0.024), prior antifungal exposure (P=0.039) and lung disease (P=0.036) were significantly associated with antifungal resistant/non-wild-type C. glabrata infection. Conclusion: Our study shed light on the antifungal susceptibility, molecular epidemiology, and clinical risk factors of C. glabrata in the ICU of a Chinese Tertiary Hospital. Importantly, we revealed the molecular mechanism of echinocandin resistance. These results highlight the significance of continued surveillance in ICUs and provide data support for the treatment of C. glabrata in clinics.
Assuntos
Antifúngicos , Candida glabrata , Candidíase , Farmacorresistência Fúngica , Unidades de Terapia Intensiva , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Centros de Atenção Terciária , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antifúngicos/farmacologia , Candida glabrata/genética , Candida glabrata/efeitos dos fármacos , Candidíase/microbiologia , Candidíase/epidemiologia , China/epidemiologia , Farmacorresistência Fúngica/genética , Equinocandinas/farmacologia , Proteínas Fúngicas/genética , Variação Genética , Genótipo , Glucosiltransferases/genética , Mutação , Fatores de RiscoRESUMO
Toxoplasma gondii is a widely spread opportunistic pathogen that can infect nearly all warm-blooded vertebrates and cause serious toxoplasmosis in immunosuppressed animals and patients. However, the relationship between the host's innate immune system and effector proteins is poorly understood, particularly with regard to how effectors antagonize cGAS-STING signaling during T. gondii infection. In this study, the ROP5 from the PRU strain of T. gondii was found to promote cGAS-STING-mediated immune responses. Mechanistically, ROP5 interacted with STING through predicted domain 2 and modulated cGAS-STING signaling in a predicted domain 3-dependent manner. Additionally, ROP5 strengthened cGAS-STING signaling by enhancing the K63-linked ubiquitination of STING. Consistently, ROP5 deficient PRU (PRUΔROP5) induced fewer type I IFN-related immune responses and replicated faster than the parental strain in RAW264.7 cells. Taken together, this study provides new insights into the mechanism by which ROP5 regulates T. gondii infection and provides new clues for strategies to prevent and control toxoplasmosis.
Assuntos
Interferon Tipo I , Proteínas de Membrana , Proteínas de Protozoários , Toxoplasma , Ubiquitinação , Toxoplasma/imunologia , Toxoplasma/patogenicidade , Animais , Camundongos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Interferon Tipo I/metabolismo , Células RAW 264.7 , Humanos , Transdução de Sinais , Toxoplasmose/imunologia , Toxoplasmose/parasitologia , Toxoplasmose/metabolismo , Imunidade Inata , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genéticaRESUMO
This study prepared enzymatic theabrownins (TBs-e), alkaline theabrownins (TBs-a), and Pu-erh tea theabrownins (TBs-f), and investigated whether different preparation processes affected the structures, nonvolatile metabolites, and biofunctional activities of TBs. Structural characterization revealed that TBs were polymeric phenolic compounds rich in hydroxyl and carboxyl groups. Nontargeted metabolomics revealed that amino acids were the primary nonvolatile metabolites in TBs-e and TBs-a, accounting for over 70 % of the total nonvolatile content. TBs-f contained more polyphenols, caffeine, and flavonoids, accounting for 14.2 %, 3.9 %, and 0.8 % of total nonvolatile content, respectively. In vivo, at 560 mg/kg body weight, TBs-f were associated with regulation of blood glucose and lipid concentrations in mice. Moreover, 16S rRNA indicated that at 1120 mg/kg body weight, TBs-a were associated with increased numbers of microbiota linked with hypolipidemic activity. This study explores the impacts of different preparation processes on TBs and provides a theoretical foundation for the understanding of TBs.
RESUMO
Non-dairy creamer is a class of microencapsulated powdered fats and oils that are widely used in the food industry. However, the oils used in it are hydrogenated vegetable oils, which contain large amounts of saturated fatty acids and are extremely harmful to the human body. This study investigated the effects of replacing hydrogenated vegetable oil with walnut oil to prepare walnut non-dairy creamer on lipid levels and intestinal microorganisms in mice. The results show that low-dose walnut non-dairy creamer significantly decreased the contents of TC and TG in serum and increased the content of HDL-C (p < 0.01). The contents of MDA, ALT, and AST were significantly decreased, while the content of SOD was increased (p < 0.01). The abundance of Firmicutes in the walnut non-dairy creamer group decreased, and the abundance of Bacteroidetes/Firmicutes (B/F) increased, which significantly increased the richness of Lactobacillus and Oscillospira (p < 0.01). Allobaculum richness was significantly decreased (p < 0.01). In conclusion, a low dose of walnut non-dairy creamer can effectively promote the metabolism of blood lipids in vivo, alleviate oxidative stress injury and lipid accumulation damage to mouse hepatocytes, and ameliorate the adverse effects of a high-fat diet on the intestinal microbiota of mice. This study provides a theoretical basis for the replacement of traditional non-dairy creamer and the research and development of walnut deep processing.
Assuntos
Ceco , Dieta Hiperlipídica , Microbioma Gastrointestinal , Juglans , Lipídeos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Juglans/química , Camundongos , Ceco/microbiologia , Ceco/metabolismo , Lipídeos/sangue , Masculino , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacosRESUMO
p-Phenylenediamines (PPDs) and PPD-derived quinones (PPD-Qs) have been considered emerging pollutants recently. Their available data on sediment and sewage sludge are limited, especially the ecological risks. Here, typical PPDs and PPD-Qs were measured in the sludge of wastewater treatment plants and surface sediment of a developed river basin (including reservoirs, estuaries, and rivers) and deep-sea troughs. The total concentrations of PPDs (∑PPD) were highest in sludge (range: 9.06-248 ng g-1), followed by surface sediment of the Dongjiang River basin, China (3.33-85.3 ng g-1), and lowest in sediment of the Okinawa Trough (0.01-7.46 ng g-1). The median value of ∑PPD in surface sediment of rivers (9.54 ng g-1) was higher than those in reservoirs (4.28 ng g-1) and estuaries (5.26 ng g-1). N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) was the major congener in all samples, accounting for over 60 % of ∑PPD. For quinones, 6PPD-Q and IPPD-Q were frequently detected in sludge, only trace 6PPD-Q was detected in the sediment of estuaries (nd-0.62 ng g-1) and rivers (nd-5.24 ng g-1), and both of them were absent from the sediment of the Okinawa Trough. The occurrence of PPDs in the trough may be the in-situ release of microplastics, and due to the low-light and weak alkaline conditions of deep-sea water, quinones may hardly photodegrade from PPDs. The PPD concentrations in sludge were positively correlated with local GDP, and the annual PPD emission from sludge will exceed 1370 kg in China. The results of ecological risk assessments indicated low risks for PPDs in sludge-amended soil, median risks for several PPDs in river sediment, but median to high risks for 6PPD-Q contamination sludge-amended soil. For the first time, we explored the potential environmental risk of PPDs and related quinones in sludge used as a soil conditioner.
RESUMO
The species-rich cosmopolitan genus Rhododendron offers a good system for exploring the genomic mechanisms underlying adaptation to diverse habitats. Here, we report high-quality chromosomal-level genome assemblies of nine species, representing all five subgenera, different altitudinal distributions, and all flower color types of this genus. Further comprehensive genomic analyses indicate diverse adaptive strategies employed by Rhododendron, particularly adaptation to alpine and subalpine habitats by expansion/contraction of gene families involved in pathogen defense and oxidative phosphorylation, genomic convergent evolution, and gene copy-number variation. The convergent adaptation to high altitudes is further shown by population genomic analysis of R. nivale from the Himalaya-Hengduan Mountains. Moreover, we identify the genes involved in the biosynthesis of anthocyanins and carotenoids, which play a crucial role in shaping flower color diversity and environmental adaptation. Our study is significant for comprehending plant adaptive evolution and the uneven distribution of species diversity across different geographical regions.
Assuntos
Adaptação Fisiológica , Genoma de Planta , Rhododendron , Rhododendron/genética , Adaptação Fisiológica/genética , Filogenia , Evolução Molecular , Genômica/métodos , Flores/genética , Variações do Número de Cópias de DNA/genética , Carotenoides/metabolismo , Antocianinas/biossíntese , Antocianinas/metabolismo , Antocianinas/genética , Especificidade da EspécieRESUMO
In this paper, a new strategy to obtain a transition-metal oxide (TMO) thermoelectric monolayer is demonstrated. We show that the TMO thermoelectric monolayer can be achieved by the replacement of a transition-metal atom with a cluster, which is composed of heavy transition atoms with abundant valence electrons. Specifically, the transition-metal atom in the XO2 (X = Ti, Zr, Hf) monolayer is replaced by the [Ag6]4+ cluster and a stable structure Ag6O2 is achieved. Due to the abundant valence electrons in the [Ag6]4+ cluster unit, n-type Ag6O2 has high electrical conductivity, which leads to a satisfactory power factor. More importantly, Ag6O2 has an extremely low phonon thermal conductivity of 0.16 W·m-1·K-1, which is one of the lowest values in thermoelectric materials. An in-depth study reveals that the extremely low value originates from the strong phonon anharmonicity and weak metal bond of the [Ag6]4+ cluster unit. Due to the satisfactory power factor and ultralow phonon thermal conductivity, Ag6O2 has high ZT at 300-700 K, and the maximum ZT is 3.77, corresponding to an energy conversion efficiency of 22.24%. Our results demonstrate that replacement of the transition-metal atom by an appropriate cluster is a good way to obtain a TMO thermoelectric monolayer.
RESUMO
BACKGROUND: The modified Xiaoyao San (MXS) formula is an adjuvant drug recommended by the National Health Commission of China for the treatment of liver cancer, which has the effect of preventing postoperative recurrence and metastasis of hepatocellular carcinoma and prolonging patient survival. However, the molecular mechanisms underlying that remain unclear. AIM: To investigate the role and mechanisms of MXS in ameliorating hepatic injury, steatosis and inflammation. METHODS: A choline-deficient/high-fat diet-induced rat nonalcoholic steatohepatitis (NASH) model was used to examine the effects of MXS on lipid accumulation in primary hepatocytes. Liver tissues were collected for western blotting and immunohistochemistry (IHC) assays. Lipid accumulation and hepatic fibrosis were detected using oil red staining and Sirius red staining. The serum samples were collected for biochemical assays and NMR-based metabonomics analysis. The inflammation/lipid metabolism-related signaling and regulators in liver tissues were also detected to reveal the molecular mechanisms of MXS against NASH. RESULTS: MXS showed a significant decrease in lipid accumulation and inflammatory response in hepatocytes under metabolic stress. The western blotting and IHC results indicated that MXS activated AMPK pathway but inhibited the expression of key regulators related to lipid accumulation, inflammation and hepatic fibrosis in the pathogenesis of NASH. The metabonomics analysis systemically indicated that the arachidonic acid metabolism and steroid hormone synthesis are the two main target metabolic pathways for MXS to ameliorate liver inflammation and hepatic steatosis. Mechanistically, we found that MXS protected against NASH by attenuating the sex hormone-related metabolism, especially the metabolism of male hormones. CONCLUSION: MXS ameliorates inflammation and hepatic steatosis of NASH by inhibiting the metabolism of male hormones. Targeting male hormone related metabolic pathways may be the potential therapeutic approach for NASH.
RESUMO
Toxoplasma gondii is a widespread protozoan parasite approximately infecting one-third of the world population and can cause serious public health problems. In this study, we investigated the protective effect of the attenuated vaccine Pru:Δcdpk2 against acute toxoplasmosis and explored the underlying immune mechanisms of the protection in pigs. The systemic T-cell and natural killer (NK) cell responses were analyzed, including kinetics, phenotype, and multifunctionality (interferon [IFN]-γ, tumor necrosis factor [TNF]-α), and the IFN-γ levels were analyzed in PBMCs. Our results showed that T. gondii-specific antibodies were induced by Pru:Δcdpk2. After challenging with RH, the antibodies were able to respond quickly in the immunized group, and the expression level was significantly higher than that in the unimmunized group. The expression level of IFN-γ significantly increased after vaccination, and the CD3+ γδ-, NK, and CD3+ γδ+ cell subsets also significantly increased. At the same time, functional analysis indicated that these cells were polarized toward a Th1 phenotype, showing the ability to secrete IFN-γ and TNF-α. The CD4+CD8α-T cell population exhibited a higher frequency of IFN-γ+ producing cells compared with the CD4-CD8α+ and CD4+CD8α+ cell populations during the early days of vaccination. Our results indicated that the attenuated vaccine could induce the expression of NK, γδ, and CD3αß cells in pigs, and IFN-γ and TNF-α secreted by these cells are important for resistance to T. gondii infection.
RESUMO
Kombucha is a well-known fermented beverage traditionally made from black tea infusion. Recent studies have focused on finding alternative materials to create novel kombucha beverages with various health benefits. In this study, we prepared and evaluated two novel kombucha beverages using Rhodiola rosea and Salvia miltiorrhiza as materials. The effects of fermentation with the residue of these plants on the kombucha were also investigated. The antioxidant activities, total phenolic contents, and concentrations of the bioactive compounds of the kombucha beverages were determined by the Trolox equivalent antioxidant capacity test, ferric-reducing antioxidant power test, Folin-Ciocalteu method, and high-performance liquid chromatography, respectively. The results revealed that the kombucha beverages made with Rhodiola rosea and Salvia miltiorrhiza had strong antioxidant capacities and abundant phenolic contents. Additionally, the kombucha fermented with Rhodiola rosea residue had higher FRAP, TEAC and TPC values than that fermented without residue. On the other hand, the Salvia miltiorrhiza kombucha fermented with residue had similar FRAP and TEAC values but lower TPC values compared to that fermented without residue. The correlation analysis showed that gallic acid, salidroside, and tyrosol were responsible for the antioxidant abilities and total phenolic contents of the Rhodiola rosea kombucha, and salvianolic acid A and salvianolic acid B contributed to the antioxidant abilities of the Salvia miltiorrhiza kombucha. Furthermore, the kombucha fermented with Rhodiola rosea residue had the highest sensory scores among the kombucha beverages studied. These findings suggest that Rhodiola rosea and Salvia miltiorrhiza are suitable for making novel kombucha beverages with strong antioxidant abilities and abundant phenolic contents, which can be used in preventing and managing oxidative stress-related diseases.
Assuntos
Antioxidantes , Fermentação , Fenóis , Rhodiola , Salvia miltiorrhiza , Antioxidantes/química , Rhodiola/química , Salvia miltiorrhiza/química , Fenóis/análise , Fenóis/química , Bebidas/análise , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Leveduras/metabolismo , Bactérias/efeitos dos fármacos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/análise , Cromatografia Líquida de Alta PressãoAssuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Pontuação de Propensão , Sulfonamidas , Humanos , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Leucemia Mieloide Aguda/tratamento farmacológico , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/diagnóstico , Sulfonamidas/uso terapêutico , Sulfonamidas/administração & dosagem , Masculino , Idoso , Feminino , Pessoa de Meia-Idade , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Adulto , Idoso de 80 Anos ou maisRESUMO
Understanding protein function is pivotal in comprehending the intricate mechanisms that underlie many crucial biological activities, with far-reaching implications in the fields of medicine, biotechnology, and drug development. However, more than 200 million proteins remain uncharacterized, and computational efforts heavily rely on protein structural information to predict annotations of varying quality. Here, we present a method that utilizes statistics-informed graph networks to predict protein functions solely from its sequence. Our method inherently characterizes evolutionary signatures, allowing for a quantitative assessment of the significance of residues that carry out specific functions. PhiGnet not only demonstrates superior performance compared to alternative approaches but also narrows the sequence-function gap, even in the absence of structural information. Our findings indicate that applying deep learning to evolutionary data can highlight functional sites at the residue level, providing valuable support for interpreting both existing properties and new functionalities of proteins in research and biomedicine.
Assuntos
Biologia Computacional , Proteínas , Proteínas/metabolismo , Proteínas/química , Biologia Computacional/métodos , Aprendizado Profundo , Bases de Dados de Proteínas , Algoritmos , HumanosRESUMO
BACKGROUND: Emerging evidence suggested that S-adenosylhomocysteine (SAH) may be a better serum biomarker for cardiovascular disease than homocysteine (Hcy). However, the role of SAH in hepatocellular carcinoma (HCC) prognosis remains unclear. OBJECTIVES: We aimed to prospectively explore the relationships between serum SAH and related metabolites [Hcy, S-adenosylmethionine (SAM)] with HCC survival, and to evaluate the effect modifications by gene polymorphisms in one-carbon metabolism key enzymes. METHODS: We included 1080 newly diagnosed patients with HCC from the Guangdong Liver Cancer Cohort. Serum SAH, Hcy, and SAM were measured utilizing high-performance liquid chromatography-tandem mass spectrometry. Gene polymorphisms in one-carbon metabolism key enzymes were identified using kompetitive allele-specific polymerase chain reaction. Primary outcomes were liver cancer-specific survival (LCSS) and overall survival (OS). Hazard ratios (HRs) and 95% confidence intervals (CIs) were computed using multivariate Cox proportional hazards models. RESULTS: After a median follow-up of 3.6 y, 601 deaths occurred, with 552 (92%) attributed to HCC. Multivariable analysis revealed that patients in the highest quartile of serum SAH concentrations were significantly associated with worse survival compared with those in the lowest quartile, with HRs of 1.58 (95% CI: 1.19, 2.10; P-trend = 0.002) for LCSS and 1.54 (95% CI: 1.18, 2.02; P-trend = 0.001) for OS. There were no significant interactions between serum SAH concentrations and genetic variants of one-carbon metabolism key enzymes. No significant associations were found between serum Hcy, SAM concentrations, and SAM/SAH ratio with LCSS or OS. CONCLUSIONS: Higher serum SAH concentrations, rather than Hcy, were independently associated with worse survival in patients with HCC, regardless of the genetic variants of one-carbon metabolism key enzymes. These findings suggest that SAH may be a novel metabolism-related prognostic biomarker for HCC.
Assuntos
Carcinoma Hepatocelular , Homocisteína , Neoplasias Hepáticas , S-Adenosil-Homocisteína , Humanos , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/mortalidade , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/mortalidade , S-Adenosil-Homocisteína/sangue , Masculino , Feminino , Homocisteína/sangue , Pessoa de Meia-Idade , Estudos Prospectivos , Idoso , S-Adenosilmetionina/sangue , Estudos de Coortes , PrognósticoAssuntos
Burkholderia pseudomallei , Melioidose , Sepse , Humanos , Melioidose/tratamento farmacológico , Melioidose/diagnóstico , Sepse/microbiologia , Sepse/tratamento farmacológico , Burkholderia pseudomallei/isolamento & purificação , Masculino , Antibacterianos/uso terapêutico , Viagem , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/tratamento farmacológico , Pessoa de Meia-IdadeRESUMO
Cinnamomum camphora chvar. borneol, a rare camphor tree variant recently identified in China, is distinguished by its high concentration of D-borneol, also known as " plant gold" due to its significant value. The essential oil extracted from this variant,rich in monoterpenes and sesquiterpenes, demonstrates a broad spectrum of pharmacological activities, including analgesic, antiinflammatory, antioxidant, cognition-enhancing, anti-bacterial, and insecticidal effects. These properties, underscored by extensive research, highlight the oil's potential in the biomedical, chemical, and food sectors as a valuable commodity. Nonetheless, the safety profile of this valuable oil remains poorly characterized, with its chemical composition and therapeutic efficacy subject to variations in the factors like geographic origin, harvesting timing, part used for extraction, and processing techniques. Such variability poses challenges to its clinical application and hampers the efficient exploitation of this resource. This review synthesizes current studies on C. camphora chvar. borneol essential oil and provides a detailed examination of its chemical and pharmacological profiles. In this study, we discuss existing research gaps and propose strategies for advancing its clinical use and industrial application, aiming to provide a foundational reference for future investigations and the resolution of its commercial and therapeutic challenges.
Assuntos
Canfanos , Cinnamomum camphora , Óleos Voláteis , Cinnamomum camphora/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Humanos , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologiaRESUMO
OBJECTIVES: The study aims to investigate genes associated with endometrial cancer (EC) progression to identify new biomarkers for early detection. METHODS: Differentially expressed genes (DEGs), Series test of cluster (STC) and protein-protein interaction analyses identified hub genes in EC. Clinical samples were utilized to examine the expression pattern of ECT2, assess its prognostic value, and evaluate its diagnostic potential. RESULTS: Upregulated DEGs were significantly enriched in cancer-related processes and pathways. Validations across databases identified ASPM, ATAD2, BUB1B, ECT2, KIF14, NUF2, NCAPG, and SPAG5 as potential hub genes, with ECT2 exhibiting the highest diagnostic efficacy. The expression levels of ECT2 varied significantly across different clinical stages, pathological grades, and metastasis statuses in UCEC. Furthermore, ECT2 mRNA was upregulated in the p53abn group, indicating a poorer prognosis, and downregulated in the MMRd and NSMP groups, suggesting a moderate prognosis. In clinical samples, ECT2 expression increased from normal endometria and endometrial hyperplasia without atypia (EH) to atypical endometrial hyperplasia (AH) and EC, effectively distinguishing between benign and malignant endometria. High ECT2 expression was associated with an unfavourable prognosis. CONCLUSIONS: ECT2 expression significantly rises in AH and EC, showing high accuracy in distinguishing between benign and malignant endometria. ECT2 emerges as a promising biomarker for diagnosing endometrial neoplasia and as a prognostic indicator in EC.