Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38400395

RESUMO

Phase measuring deflectometry (PMD) stands as an extremely important technique for specular surface measurement. However, the parasitic reflection from the rear surface poses a challenge for PMD. To solve this problem, this paper proposes an effective method based on multi-frequency and phase-shifting to search for the correct phase. Firstly, the relationship between the phase error and fringe frequency is adequately investigated. Subsequently, an auxiliary function is established to find the special frequency at which the phase error is zero theoretically and the unwrapped phase is the phase of the top surface exactly. Then, the shape of the top surface can be reconstructed correctly. A standard plane element with a thickness of 40 mm and a flat glass with 19 mm were measured. The experimental results verify the feasibility of the proposed method. Considering the result of the interferometer as a reference, the RMSE of the error map is up to 20 nm for the standard plane element. The experimental results demonstrate that the proposed method can successfully untangle the superposed reflections and reliably reconstruct the top surface of the object under test.

2.
J Phys Chem Lett ; 15(1): 68-75, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38131660

RESUMO

The specific stacking mode of D/A blocks is often considered to largely determine the physicochemical properties of cocrystals. However, this rule may fail when encountering a large degree of (integer or near-integer) charge transfer situations. Herein, we explore the extensive correlations between the possible smallest structural units, stacking modes, and near-infrared photothermal conversion (NIR-PTC) properties of F4TCNQ-based cocrystals with typical features of integer-charge-transfer. Surprisingly, these cocrystals with distinct stacking modes display analogous D-A interactions, broad red-shift absorption, ultrafast (1-3 ps) relaxation dynamics of excited states, and excellent NIR-PTC properties. This supports that the resulting "D+A-" ion pairs from integer-charge-transfer may serve as the primary structural units beneath the secondary stacking modes to dominate the property of cocrystals. The stacking modes play an important but only secondary role. This work provides new insights into the structure-dynamics-property correlations and modular design of organic cocrystals for PTC and other applications.

3.
ACS Macro Lett ; 12(7): 835-840, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37294873

RESUMO

Tunable multishape memory polymers offer intriguing opportunities for memorizing multiple temporary shapes with tunable transition temperatures from one material composition. However, such multishape memory effects have been exclusively correlated with the thermomechanical behaviors of polymers, significantly limiting their applications in heat-sensitive scenarios. Here we report a nonthermal tunable multishape memory effect in covalently cross-linked cellulosic macromolecular networks, which spontaneously organize into supramolecular mesophases by water evaporation induced self-assembly. The supramolecular mesophase endows the network with a broad, reversible hygromechanical response combined with a unique moisture memory effect at ambient temperature, enabling diverse multishape memory behaviors (dual-, triple-, and quadruple-shape memory) under highly tunable and independent control of relative humidity (RH) alone. Significantly, such a hygroscopic tunable multishape memory effect readily extends the implications of shape memory polymers beyond the conventional thermomechanical regimes with potential advantages for biomedical applications.

4.
Adv Sci (Weinh) ; 7(17): 2000258, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32995117

RESUMO

Flexible pressure sensors are essential components for soft electronics by providing physiological monitoring capability for wearables and tactile perceptions for soft robotics. Flexible pressure sensors with reliable performance are highly desired yet challenging to construct to meet the requirements of practical applications in daily activities and even harsh environments, such as high temperatures. This work describes a highly sensitive and reliable capacitive pressure sensor based on flexible ceramic nanofibrous networks with high structural elasticity, which minimizes performance degradation commonly seen in polymer-based sensors because of the viscoelastic behavior of polymers. Such ceramic pressure sensors exhibit high sensitivity (≈4.4 kPa-1), ultralow limit of detection (<0.8 Pa), fast response speed (<16 ms) as well as low fatigue over 50 000 loading/unloading cycles. The high stability is attributed to the excellent mechanical stability of the ceramic nanofibrous network. By employing textile-based electrodes, a fully breathable and wearable ceramic pressure sensor is demonstrated for real-time health monitoring and motion detection. Owing to the high-temperature resistance of ceramics, the ceramic nanofibrous network sensor can function properly at temperatures up to 370 °C, showing great promise for harsh environment applications.

5.
Small ; 14(35): e1801657, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30058286

RESUMO

Nature has long offered human beings with useful materials. Herein, plant materials including flowers and leaves have been directly used as the dielectric material in flexible capacitive electronic skin (e-skin), which simply consists of a dried flower petal or leaf sandwiched by two flexible electrodes. The plant material is a 3D cell wall network which plays like a compressible metamaterial that elastically collapses upon pressing plus some specific surface structures, and thus the device can sensitively respond to pressure. The device works over a broad-pressure range from 0.6 Pa to 115 kPa with a maximum sensitivity of 1.54 kPa-1 , and shows high stability over 5000 cyclic pressings or bends. The natural-material-based e-skin has been applied in touch sensing, motion monitoring, gas flow detection, and the spatial distribution of pressure. As the foam-like structure is ubiquitous in plants, a general strategy for a green, cost-effective, and scalable approach to make flexible e-skins is offered here.


Assuntos
Eletricidade , Plantas/química , Dispositivos Eletrônicos Vestíveis , Plantas/ultraestrutura , Maleabilidade
6.
ACS Appl Mater Interfaces ; 10(24): 21009-21017, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29799181

RESUMO

We report stretchable metal-mesh transparent electrodes (TEs) with excellent electrical conductivity (<2 Ω/sq) and optical transparency (>80%) under up to 55% strain. The figures of merit on these electrodes, as defined as the ratio between electrical conductivity and optical conductivity, are among the highest reported for stretchable TEs under moderate stretching. Moreover, we demonstrate their application in a stretchable electroluminescent (EL) light-emitting film as top and bottom electrodes. EL lighting devices require low-resistance electrodes to unleash their potential for large-area low-power-consumption applications, in which our highly conductive and transparent stretchable TEs provide an edge on other competitor approaches. Importantly, our stretchable metal-mesh electrodes are fabricated through a vacuum-free solution-processed approach that is scalable for cost-effective mass production. We also investigate the fracture and fatigue mechanisms of stretchable metal-mesh electrodes with various mesh patterns and observe different behaviors under one-time and cyclic stretching conditions. Our solution-processed fabrication method, failure mechanism investigation, and device demonstration for metal-mesh stretchable TEs will facilitate the adoption of this promising high-performance approach in stretchable and wearable electronics applications.

7.
Nano Lett ; 17(12): 7974-7979, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29144753

RESUMO

The spin and orbital angular momentum (SAM and OAM) of light is providing a new gateway toward high capacity and robust optical communications. While the generation of light with angular momentum is well studied in linear optics, its further integration into nonlinear optical devices will open new avenues for increasing the capacity of optical communications through additional information channels at new frequencies. However, it has been challenging to manipulate the both SAM and OAM of nonlinear signals in harmonic generation processes with conventional nonlinear materials. Here, we report the generation of spin-controlled OAM of light in harmonic generations by using ultrathin photonic metasurfaces. The spin manipulation of OAM mode of harmonic waves is experimentally verified by using second harmonic generation (SHG) from gold meta-atom with 3-fold rotational symmetry. By introducing nonlinear phase singularity into the metasurface devices, we successfully generate and measure the topological charges of spin-controlled OAM mode of SHG through an on-chip metasurface interferometer. The nonlinear photonic metasurface proposed in this work not only opens new avenues for manipulating the OAM of nonlinear optical signals but also benefits the understanding of the nonlinear spin-orbit interaction of light in nanoscale devices.

8.
Nano Lett ; 17(2): 1090-1096, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28094950

RESUMO

Silver nanowire (AgNW) films have been studied as the most promising flexible transparent electrodes for flexible photoelectronics. The wire-wire junction resistance in the AgNW film is a critical parameter to the electrical performance, and several techniques of nanowelding or soldering have been reported to reduce the wire-wire junction resistance. However, these methods require either specific facilities, or additional materials as the "solder", and often have adverse effects to the AgNW film or substrate. In this study, we show that at the nanoscale, capillary force is a powerful driving force that can effectively cause self-limited cold welding of the wire-wire junction for AgNWs. The capillary-force-induced welding can be simply achieved by applying moisture on the AgNW film, without any technical support like the addition of materials or the use of specific facilities. The moisture-treated AgNW films exhibit a significant decrease in sheet resistance, but negligible changes in transparency. We have also demonstrated that this method is effective to heal damaged AgNW films of wearable electronics and can be conveniently performed not only indoors but also outdoors where technical support is often unavailable. The capillary-force-based method may also be useful in the welding of other metal NWs, the fabrication of nanostructures, and smart assemblies for versatile flexible optoelectronic applications.

9.
Small ; 11(42): 5712-8, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26356036

RESUMO

Stretchable and transparent inorganic semiconductors play a key role for the next generation of wearable optoelectronics. Achieving stretchability in intrinsically rigid inorganic materials is far more challenging than in polymers and metals. Here, we present a low-cost and scalable strategy to engineer inorganic semiconductors into a buckling open-mesh configuration, by which extraordinary stretchability (≈160%) as well as high optical transparency (>86% at 550 nm) can be realized simultaneously in SnO2 nanofiber webs. Moreover, the mechanical stretchability of SnO2 nanowebs can be further improved along with the optical transparency by precisely controlling the nanofiber density. The as-prepared freestanding nanowebs can be laminated onto curved surfaces by conformal contact. It is demonstrated that the fully exposed SnO2 nanowebs can be used as wearable UV photodetectors, showing reliable optoelectronic performance and remarkable tolerance to repeated complex deformations with body movements.

10.
Chem Commun (Camb) ; 50(22): 2847-50, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24345893

RESUMO

We present a highly transparent heterojunction photodiode by precisely aligning n-type SnO2 nanobelts on top of a p-type NiO thin film. This p-n junction diode demonstrates stable rectifying characteristics as well as greatly enhanced ultraviolet photoresponse, which exhibits an ultrahigh photosensitivity of up to 10(5) with accelerated response speed under reverse bias.

11.
Nanoscale ; 6(2): 688-92, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24271150

RESUMO

Li doped NiO nanowires with a diameter smaller than 100 nm were synthesized by electrospinning. The nanowires exhibit p-type characteristics with improved electrical conductivity through Li doping. Moreover, an enhanced gating effect was obtained in Li-NiO-nanowire-based field effect transistors (FETs), which hold great potential in transparent optoelectronics.

12.
Nanoscale ; 4(16): 5065-70, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22772795

RESUMO

One dimensional Eu:La(1-x)Gd(x)VO(4) nanofibers were successfully prepared via an electrospinning method. Thermogravimetry and differential scanning calorimeter (TG-DSC), X-ray diffraction, Raman spectroscopy, scanning electron microscopy and photoluminescence were used to characterize the samples. The nanofibers crystallized well below 600 °C and with the increase of Gd contents, the nanofibers crystallized in a zircon-type structure. The Raman spectra shifted to higher frequency with the increase of Gd content for zircon Eu:La(1-x)Gd(x)VO(4). The peaks of photoluminescence spectra shift towards longer wavelength when Gd replaces La and when x = 0.4, the photoluminescence intensity reaches its maximum value. The band structure and density of states of m-LaVO(4), t-LaVO(4), t-LaGdVO(4) and t-GdVO(4) were calculated by local-spin density approximation (LSDA) band theory with Hubbard term of U. The band gap of t-LaGdVO(4) is just the average of t-LaVO(4) and t-GdVO(4). In t-LaGdVO(4), La 5p states are highly localized.

13.
Nanoscale ; 4(3): 801-6, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22159152

RESUMO

Enhanced visible-light-driven photocatalysis of TiO(2) nanofibers have been prepared by the electrospinning method combined with a surface nitridation process. The visible-light-driven photo-catalytic activity of surface nitrided TiO(2) (N-TiO(2)) nanofibers has been evaluated using rhodamine B indicator, and it was found that the visible-light-driven photocatalytic activity of the electrospun TiO(2) nanofibers could be enhanced by nitridation in NH(3) atmosphere. The optimal visible-light photocatalytic activity of N-TiO(2) nanofibers exceeded that of pure TiO(2) nanofibers by a factor of more than 12. The nitridation temperature under NH(3) flow was found to play an important part in the performance of N-TiO(2) nanofibers, and the optimum temperature is 500 °C. Structure, morphology and photoluminescence of these nanofibers were studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscope (SEM) and photoluminescence (PL) spectroscopy. The mechanism of the enhancement of visible-light-driven photocatalytic activity by surface nitridation has been discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA