Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Phenomics ; 3(1): 50-63, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36939769

RESUMO

Age and gender are the important factors for brain metabolic declines in both normal aging and neurodegeneration, and the confounding effects may influence early and differential diagnosis of neurodegenerative diseases based on the [18F]fluorodeoxyglucose positron emission tomography ([18F]FDG PET). We aimed to explore the potential of the adjustment of age- and gender-related confounding factors on [18F]FDG PET images in differentiation of Parkinson's disease (PD), multiple system atrophy (MSA) and progressive supra-nuclear palsy (PSP). Eight hundred and seventy-seven clinically definitely diagnosed Parkinsonian patients from a benchmark Huashan Parkinsonian PET imaging database were included. An age- and gender-adjusted Z (AGAZ) score was established based on the gender-specific longitudinal metabolic changes on healthy subjects. AGAZ scores and standardized uptake value ratio (SUVR) values were quantified at regional-level and support vector machine-based error-correcting output codes method was applied for classification. Additional references of the classifications based on metabolic pattern scores were included. The feature-based AGAZ score showed the best performance in classification (accuracy for PD, MSA, PSP: 93.1%, 96.3%, 94.8%). In both genders, the AGAZ score consistently achieved the best efficiency, and the improvements compared to the conventional SUVR value for PD, MSA, and PSP mainly laid in specificity (Male: 5.7%; Female: 11.1%), sensitivity (Male: 7.2%; Female: 7.3%), and sensitivity (Male: 7.3%; Female: 17.2%). Female patients benefited more from the adjustment on [18F]FDG PET in MSA and PSP groups (absolute net reclassification index, p < 0.001). Collectively, the adjustment of age- and gender-related confounding factors may improve the differential diagnosis of Parkinsonism. Particularly, the diagnosis of female Parkinsonian population has the best improvement from this correction. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-022-00079-6.

2.
Eur J Nucl Med Mol Imaging ; 49(8): 2798-2811, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35588012

RESUMO

PURPOSE: This work attempts to decode the discriminative information in dopamine transporter (DAT) imaging using deep learning for the differential diagnosis of parkinsonism. METHODS: This study involved 1017 subjects who underwent DAT PET imaging ([11C]CFT) including 43 healthy subjects and 974 parkinsonian patients with idiopathic Parkinson's disease (IPD), multiple system atrophy (MSA) or progressive supranuclear palsy (PSP). We developed a 3D deep convolutional neural network to learn distinguishable DAT features for the differential diagnosis of parkinsonism. A full-gradient saliency map approach was employed to investigate the functional basis related to the decision mechanism of the network. Furthermore, deep-learning-guided radiomics features and quantitative analysis were compared with their conventional counterparts to further interpret the performance of deep learning. RESULTS: The proposed network achieved area under the curve of 0.953 (sensitivity 87.7%, specificity 93.2%), 0.948 (sensitivity 93.7%, specificity 97.5%), and 0.900 (sensitivity 81.5%, specificity 93.7%) in the cross-validation, together with sensitivity of 90.7%, 84.1%, 78.6% and specificity of 88.4%, 97.5% 93.3% in the blind test for the differential diagnosis of IPD, MSA and PSP, respectively. The saliency map demonstrated the most contributed areas determining the diagnosis located at parkinsonism-related regions, e.g., putamen, caudate and midbrain. The deep-learning-guided binding ratios showed significant differences among IPD, MSA and PSP groups (P < 0.001), while the conventional putamen and caudate binding ratios had no significant difference between IPD and MSA (P = 0.24 and P = 0.30). Furthermore, compared to conventional radiomics features, there existed average above 78.1% more deep-learning-guided radiomics features that had significant differences among IPD, MSA and PSP. CONCLUSION: This study suggested the developed deep neural network can decode in-depth information from DAT and showed potential to assist the differential diagnosis of parkinsonism. The functional regions supporting the diagnosis decision were generally consistent with known parkinsonian pathology but provided more specific guidance for feature selection and quantitative analysis.


Assuntos
Aprendizado Profundo , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Transtornos Parkinsonianos , Encéfalo/metabolismo , Diagnóstico Diferencial , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Humanos , Atrofia de Múltiplos Sistemas/diagnóstico , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos
3.
Eur J Nucl Med Mol Imaging ; 49(4): 1157-1165, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34651225

RESUMO

BACKGROUND: Transpathology highlights the interpretation of the underlying physiology behind molecular imaging. However, it remains challenging due to the discrepancies between in vivo and in vitro measurements and difficulties of precise co-registration between trans-scaled images. This study aims to develop a multimodal intravital molecular imaging (MIMI) system as a tool for in vivo tumour transpathology investigation. METHODS: The proposed MIMI system integrates high-resolution positron imaging, magnetic resonance imaging (MRI) and microscopic imaging on a dorsal skin window chamber on an athymic nude rat. The window chamber frame was designed to be compatible with multimodal imaging and its fiducial markers were customized for precise physical alignment among modalities. The co-registration accuracy was evaluated based on phantoms with thin catheters. For proof of concept, tumour models of the human colorectal adenocarcinoma cell line HT-29 were imaged. The tissue within the window chamber was sectioned, fixed and haematoxylin-eosin (HE) stained for comparison with multimodal in vivo imaging. RESULTS: The final MIMI system had a maximum field of view (FOV) of 18 mm × 18 mm. Using the fiducial markers and the tubing phantom, the co-registration errors are 0.18 ± 0.27 mm between MRI and positron imaging, 0.19 ± 0.22 mm between positron imaging and microscopic imaging and 0.15 ± 0.27 mm between MRI and microscopic imaging. A pilot test demonstrated that the MIMI system provides an integrative visualization of the tumour anatomy, vasculatures and metabolism of the in vivo tumour microenvironment, which was consistent with ex vivo pathology. CONCLUSIONS: The established multimodal intravital imaging system provided a co-registered in vivo platform for trans-scale and transparent investigation of the underlying pathology behind imaging, which has the potential to enhance the translation of molecular imaging.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias , Humanos , Microscopia Intravital , Imageamento por Ressonância Magnética/métodos , Imagem Molecular , Neoplasias/diagnóstico por imagem , Imagens de Fantasmas , Microambiente Tumoral
4.
Neuroimage Clin ; 27: 102294, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32570206

RESUMO

OBJECTIVE: Idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) is a prodromal stage of synucleinopathies such as Parkinson's disease (PD). Positron emission tomography (PET) with 18F-FDG reveals metabolic perturbations, which are scored by spatial covariance analysis. However, the resultant pattern scores do not capture the spatially heterogeneous trajectories of metabolic changes between individual brain regions. Assuming metabolic progression occurs as a continuum from the healthy control (HC) condition to iRBD and then PD, we investigated spatial dynamics of progressively perturbed glucose metabolism in a cross-sectional study. METHODS: 19 iRBD patients, 38 PD patients and 19 HC subjects underwent 18F-FDG PET. The images were spatially normalized, scaled to the global mean uptake, and automatically parcellated. We contrasted regional metabolism by group, and allocated the inferred progression to one of several possible trajectories. We further investigated the correlations between 18F-FDG uptake and the disease duration in the iRBD and PD groups, respectively. We also explored relationships between 18F-FDG uptake and the Unified Parkinson's Disease Rating Scale motor (UPDRS III) scores in the PD group. RESULTS: PD patients exhibited more extensive relative hyper- and hypo-metabolism than iRBD patients. We identified three dynamic metabolic trajectories, cross-sectional hypo- or hypermetabolism, cross-sectionally unchanged hypo- or hypermetabolism, cross-sectionally late hypo- or hypermetabolism, appearing only in the contrast of PD with iRBD. No correlation was found between relative 18F-FDG metabolism and disease duration in the iRBD group. Regional hyper- and hypo-metabolism in the PD patients correlated with disease duration or clinical UPDRS III scores. CONCLUSION: Cerebral metabolism changes heterogeneously in a continuum extending from HC to iRBD and PD groups in this preliminary study. The distinctive metabolic trajectories point towards a potential neuroimaging biomarker for conversion of iRBD to frank PD, which should be amenable to advanced pattern recognition analysis in future longitudinal studies.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Processamento de Imagem Assistida por Computador , Transtornos do Sono-Vigília/metabolismo , Transtornos do Sono-Vigília/patologia , Idoso , Encéfalo/fisiopatologia , Estudos Transversais , Progressão da Doença , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Tomografia por Emissão de Pósitrons/métodos , Sintomas Prodrômicos
5.
J Alzheimers Dis ; 73(3): 1023-1033, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31884462

RESUMO

BACKGROUND: 2-(4'- [11C]Methylaminophenyl)-6-hydroxybenzothiazole ([11C]-PiB), purportedly a specific imaging agent for cerebral amyloid-ß plaques, is a specific, high affinity substrate for estrogen sulfotransferase (SULT1E1), an enzyme that regulates estrogen homeostasis. OBJECTIVE: In this work, we use positron emission tomography (PET) imaging with [11C]-PiB to assess the functional activity of SULT1E1 in the brain of moyamoya disease patients. METHODS: Ten moyamoya subjects and five control patients were evaluated with [11C]-PiB PET and structural MRI scans. Additionally, a patient with relapsing-remitting multiple sclerosis (RRMS) received [11C]-PiB PET scans before and after steroidal and immunomodulatory therapy. Parametric PET images were established to assess SULT1E1 distribution in the inflamed brain tissue. RESULTS: Increased [11C]-PiB SRTM DVR in the thalamus, pons, corona radiata, and internal capsule of moyamoya cohort subjects was observed in comparison with controls (p ≤ 0.01). This was observed in patients without treatment, with collateralization, and also after radiation. The post-treatment [11C]-PiB PET scan in one RRMS patient also revealed substantially reduced subcortical brain inflammation. In validation studies, [11C]-PiB autoradiography signal in the peri-infarct area of the rat middle cerebral arterial occlusion stroke model was shown to correlate with SULT1E1 immunohistochemistry. CONCLUSION: Strong [11C]-PiB PET signal associated with intracranial inflammation in the moyamoya syndrome cohort and a single RRMS patient appears consistent with functional imaging of SULT1E1 activity in the human brain. This preliminary work offers substantial and direct evidence that significant [11C]-PiB PET focal signals can be obtained from the living human brain with intracranial inflammation, signals not attributable to amyloid-ß plaques.


Assuntos
Encéfalo/diagnóstico por imagem , Inflamação/diagnóstico por imagem , Doença de Moyamoya/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Sulfotransferases/metabolismo , Adulto , Idoso , Encéfalo/metabolismo , Radioisótopos de Carbono , Feminino , Humanos , Inflamação/metabolismo , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doença de Moyamoya/metabolismo
6.
J Nucl Med ; 61(6): 931-937, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31676728

RESUMO

2-Deoxy-2-18F-fluoro-d-glucose (2-FDG) with PET is undeniably useful in the clinic, being able, among other uses, to monitor change over time using the 2-FDG SUV metric. This report suggests some potentially serious caveats for this and related roles for 2-FDG PET. Most critical is the assumption that there is an exact proportionality between glucose metabolism and 2-FDG metabolism, called the lumped constant, or LC. This report describes that LC is not constant for a specific tissue and may be variable before and after disease treatment. The purpose of this work is not to deny the clinical value of 2-FDG PET; it is a reminder that when one extends the use of an appropriately qualified imaging method, new observations may arise and further validation would be necessary. The current understanding of glucose-based energetics in vivo is based on the quantification of glucose metabolic rates with 2-FDG PET, a method that permits the noninvasive assessment of various human disorders. However, 2-FDG is a good substrate only for facilitated-glucose transporters (GLUTs), not for sodium-dependent glucose cotransporters (SGLTs), which have recently been shown to be distributed in multiple human tissues. Thus, the GLUT-mediated in vivo glucose utilization measured by 2-FDG PET would be masked to the potentially substantial role of functional SGLTs in glucose transport and use. Therefore, under these circumstances, the 2-FDG LC used to quantify in vivo glucose utilization should not be expected to remain constant. 2-FDG LC variations have been especially significant in tumors, particularly at different stages of cancer development, affecting the accuracy of quantitative glucose measures and potentially limiting the prognostic value of 2-FDG, as well as its accuracy in monitoring treatments. SGLT-mediated glucose transport can be estimated using α-methyl-4-deoxy-4-18F-fluoro-d-glucopyranoside (Me-4FDG). Using both 2-FDG and Me-4FDG should provide a more complete picture of glucose utilization via both GLUT and SGLT transporters in health and disease states. Given the widespread use of 2-FDG PET to infer glucose metabolism, it is relevant to appreciate the potential limitations of 2-FDG as a surrogate for glucose metabolic rate and the potential reasons for variability in LC. Even when the readout for the 2-FDG PET study is only an SUV parameter, variability in LC is important, particularly if it changes over the course of disease progression (e.g., an evolving tumor).


Assuntos
Fluordesoxiglucose F18 , Glucose/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Barreira Hematoencefálica , Encéfalo/metabolismo , Transportador de Glucose Tipo 1/fisiologia , Glicólise , Humanos , Neoplasias/metabolismo , Proteínas de Transporte de Sódio-Glucose/fisiologia
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 3531-3534, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946640

RESUMO

Idiopathic Parkinsons disease and atypical parkinsonian syndromes have similar symptoms at early disease stages, which makes the early differential diagnosis difficult. Positron emission tomography with 18F-FDG shows the ability to assess early neuronal dysfunction of neurodegenerative diseases and is well established for clinical use. In the past decades, machine learning methods have been widely used for the differential diagnosis of parkinsonism based on metabolic patterns. Unlike these conventional machine learning methods relying on hand-crafted features, the deep convolutional neural networks, which have achieved significant success in medical applications recently, have the advantage of learning salient feature representations automatically and effectively. This advantage may offer more appropriate invisible features extracted from data for the enhancement of the diagnosis accuracy. Therefore, this paper develops a 3D deep convolutional neural network on 18F-FDG PET images for the automated early diagnosis. Furthermore, we depicted in saliency maps the decision mechanism of the deep learning method to assist the physiological interpretation of deep learning performance. The proposed method was evaluated on a dataset with 920 patients. In addition to improving the accuracy in the differential diagnosis of parkinsonism compared to state-of-the-art approaches, the deep learning methods also discovered saliency features in a number of critical regions (e.g., midbrain), which are widely accepted as characteristic pathological regions for movement disorders but were ignored in the conventional analysis of FDG PET images.


Assuntos
Fluordesoxiglucose F18 , Redes Neurais de Computação , Transtornos Parkinsonianos , Diagnóstico Diferencial , Humanos , Transtornos Parkinsonianos/diagnóstico por imagem , Tomografia por Emissão de Pósitrons
8.
Mol Imaging Biol ; 21(1): 25-34, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29855843

RESUMO

PURPOSE: Caution is warranted when in vitro results of biomarkers labeled with tritium were perfunctorily used to criticize in vivo data and conclusions derived with the same tracers labeled with positron emitters and positron emission tomography (PET). This concept is illustrated herein with the PET utilization of [18F]FDDNP, a biomarker used for in vivo visualization of ß-amyloid and tau protein neuroaggregates in humans, later contradicted by in vitro data reported with [3H]FDDNP. In this investigation, we analyze the multiple factors involved in the experimental design of the [3H]FDDNP in vitro study that led to the erroneous interpretation of results. PROCEDURE: The present work describes full details on the synthesis, characterization, purity, and kinetics of radiolytic stability of [3H]FDDNP. The optimal in vitro conditions for detecting tau and ß-amyloid protein aggregates using macroscopic and microscopic autoradiography with both [18F]FDDNP and [3H]FDDNP are also presented. Macroscopic autoradiography determinations were performed with [3H]FDDNP of verified purity using established methods described previously in the literature. RESULTS: The autoradiographic results using phosphate buffered saline (PBS) with less than 1 % EtOH and pure, freshly prepared [3H]FDDNP compared with the earlier reported data using [3H]FDDNP of undetermined purity and PBS in 10 % EtOH demonstrate the critical importance of rigorous experimental design for meaningful in vitro determinations. [18F]FDDNP binding to both amyloid plaques and neurofibrillary tangles was confirmed by amyloid and tau immunohistochemical stains of adjacent tissues. CONCLUSIONS: This work illustrates the sensitivity of in vitro techniques to various experimental conditions and underscores that conclusions obtained from translational in vitro to in vivo determinations must always be performed with extreme care to avoid wrong interpretations that can be perpetuated and assumed without further analysis.


Assuntos
Fluordesoxiglucose F18/metabolismo , Imuno-Histoquímica/métodos , Nitrilas/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Autorradiografia/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Diagnóstico , Estabilidade de Medicamentos , Fluordesoxiglucose F18/farmacocinética , Formaldeído/química , Humanos , Técnicas In Vitro , Microtomia , Valor Preditivo dos Testes , Prognóstico , Ligação Proteica , Compostos Radiofarmacêuticos/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes
9.
J Alzheimers Dis ; 65(1): 79-88, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30040711

RESUMO

BACKGROUND: Our group has shown that in vivo tau brain binding patterns from FDDNP-PET scans in retired professional football players with suspected chronic traumatic encephalopathy differ from those of tau and amyloid aggregate binding observed in Alzheimer's disease (AD) patients and cognitively-intact controls. OBJECTIVE: To compare these findings with those from military personnel with histories of mild traumatic brain injury(mTBI). METHODS: FDDNP-PET brain scans were compared among 7 military personnel and 15 retired players with mTBI histories and cognitive and/or mood symptoms, 24 AD patients, and 28 cognitively-intact controls. Nonparametric ANCOVAs with Tukey-Kramer adjusted post-hoc comparisons were used to test for significant differences in regional FDDNP binding among subject groups. RESULTS: FDDNP brain binding was higher in military personnel compared to controls in the amygdala, midbrain, thalamus, pons, frontal and anterior and posterior cingulate regions (p < 0.01-0.0001). Binding patterns in the military personnel were similar to those of the players except for the amygdala and striatum (binding higher in players; p = 0.02-0.003). Compared with the AD group, the military personnel showed higher binding in the midbrain (p = 0.0008) and pons (p = 0.002) and lower binding in the medial temporal, lateral temporal, and parietal regions (all p = 0.02). CONCLUSION: This first study of in vivo tau and amyloid brain signals in military personnel with histories of mTBI shows binding patterns similar to those of retired football players and distinct from the binding patterns in AD and normal aging, suggesting the potential value of FDDNP-PET for early detection and treatment monitoring in varied at-risk populations.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encefalopatia Traumática Crônica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Proteínas tau/metabolismo , Idoso , Doença de Alzheimer/diagnóstico por imagem , Traumatismos em Atletas/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encefalopatia Traumática Crônica/complicações , Transtornos Cognitivos/diagnóstico por imagem , Transtornos Cognitivos/etiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Militares , Nitrilas/farmacocinética , Ligação Proteica/efeitos dos fármacos , Estatísticas não Paramétricas , Estados Unidos
10.
Neuroimage Clin ; 17: 751-760, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29527482

RESUMO

Autosomal dominant Alzheimer's disease (ADAD) is a small subset of Alzheimer's disease that is genetically determined with 100% penetrance. It provides a valuable window into studying the course of pathologic processes that leads to dementia. Arterial spin labeling (ASL) MRI is a potential AD imaging marker that non-invasively measures cerebral perfusion. In this study, we investigated the relationship of cerebral blood flow measured by pseudo-continuous ASL (pCASL) MRI with measures of cerebral metabolism (FDG PET) and amyloid deposition (Pittsburgh Compound B (PiB) PET). Thirty-one participants at risk for ADAD (age 39 ± 13 years, 19 females) were recruited into this study, and 21 of them received both MRI and FDG and PiB PET scans. Considerable variability was observed in regional correlations between ASL-CBF and FDG across subjects. Both regional hypo-perfusion and hypo-metabolism were associated with amyloid deposition. Cross-sectional analyses of each biomarker as a function of the estimated years to expected dementia diagnosis indicated an inverse relationship of both perfusion and glucose metabolism with amyloid deposition during AD development. These findings indicate that neurovascular dysfunction is associated with amyloid pathology, and also indicate that ASL CBF may serve as a sensitive early biomarker for AD. The direct comparison among the three biomarkers provides complementary information for understanding the pathophysiological process of AD.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Compostos de Anilina/metabolismo , Encéfalo/diagnóstico por imagem , Fluordesoxiglucose F18/metabolismo , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons/métodos , Tiazóis/metabolismo , Adulto , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Circulação Cerebrovascular/fisiologia , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Presenilina-1/genética , Presenilina-2 , Marcadores de Spin , Adulto Jovem
11.
J Neurooncol ; 138(3): 557-569, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29525972

RESUMO

A novel glucose transporter, the sodium glucose cotransporter 2 (SGLT2), has been demonstrated to contribute to the demand for glucose by pancreatic and prostate tumors, and its functional activity has been imaged using a SGLT specific PET imaging probe, α-methyl-4-[F-18]fluoro-4-deoxy-D-glucopyaranoside (Me-4FDG). In this study, Me-4FDG PET was extended to evaluate patients with high-grade astrocytic tumors. Me-4FDG PET scans were performed in four patients diagnosed with WHO Grade III or IV astrocytomas and control subjects, and compared with 2-deoxy-2-[F-18]fluoro-D-glucose (2-FDG) PET and magnetic resonance imaging (MRI) of the same subjects. Immunocytochemistry was carried out on Grade IV astrocytomas to determine the cellular location of SGLT proteins within the tumors. Me-4FDG retention was pronounced in astrocytomas in dramatic contrast to the lack of uptake into the normal brain, resulting in a high signal-to-noise ratio. Macroscopically, the distribution of Me-4FDG within the tumors overlapped with that of 2-FDG uptake and tumor definition using contrast-enhanced MRI images. Microscopically, the SGLT2 protein was found to be expressed in neoplastic glioblastoma cells and endothelial cells of the proliferating microvasculature. This preliminary study shows that Me-4FDG is a highly sensitive probe for visualization of high-grade astrocytomas by PET. The distribution of Me-4FDG within tumors overlapped that for 2-FDG, but the absence of background brain Me-4FDG resulted in superior imaging sensitivity. Furthermore, the presence of SGLT2 protein in astrocytoma cells and the proliferating microvasculature may offer a novel therapy using the SGLT2 inhibitors already approved by the FDA to treat type 2 diabetes mellitus.


Assuntos
Astrocitoma/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Glucosídeos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Transportador 2 de Glucose-Sódio/metabolismo , Adulto , Idoso , Astrocitoma/metabolismo , Astrocitoma/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Masculino , Microvasos/metabolismo , Microvasos/patologia , Pessoa de Meia-Idade , Gradação de Tumores , Dados Preliminares
12.
Am J Geriatr Psychiatry ; 26(3): 266-277, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29246725

RESUMO

OBJECTIVE: Because curcumin's anti-inflammatory properties may protect the brain from neurodegeneration, we studied its effect on memory in non-demented adults and explored its impact on brain amyloid and tau accumulation using 2-(1-{6-[(2-[F-18]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile positron emission tomography (FDDNP-PET). METHODS: Forty subjects (age 51-84 years) were randomized to a bioavailable form of curcumin (Theracurmin® containing 90 mg of curcumin twice daily [N = 21]) or placebo (N = 19) for 18 months. Primary outcomes were verbal (Buschke Selective Reminding Test [SRT]) and visual (Brief Visual Memory Test-Revised [BVMT-R]) memory, and attention (Trail Making A) was a secondary outcome. FDDNP-PET signals (15 curcumin, 15 placebo) were determined in amygdala, hypothalamus, medial and lateral temporal, posterior cingulate, parietal, frontal, and motor (reference) regions. Mixed effects general linear models controlling for age and education, and effect sizes (ES; Cohen's d) were estimated. RESULTS: SRT Consistent Long-Term Retrieval improved with curcumin (ES = 0.63, p = 0.002) but not with placebo (ES = 0.06, p = 0.8; between-group: ES = 0.68, p = 0.05). Curcumin also improved SRT Total (ES = 0.53, p = 0.002), visual memory (BVMT-R Recall: ES = 0.50, p = 0.01; BVMT-R Delay: ES = 0.51, p = 0.006), and attention (ES = 0.96, p < 0.0001) compared with placebo (ES = 0.28, p = 0.1; between-group: ES = 0.67, p = 0.04). FDDNP binding decreased significantly in the amygdala with curcumin (ES = -0.41, p = 0.04) compared with placebo (ES = 0.08, p = 0.6; between-group: ES = 0.48, p = 0.07). In the hypothalamus, FDDNP binding did not change with curcumin (ES = -0.30, p = 0.2), but increased with placebo (ES = 0.26, p = 0.05; between-group: ES = 0.55, p = 0.02). CONCLUSIONS: Daily oral Theracurmin may lead to improved memory and attention in non-demented adults. The FDDNP-PET findings suggest that symptom benefits are associated with decreases in amyloid and tau accumulation in brain regions modulating mood and memory.


Assuntos
Envelhecimento/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/farmacologia , Atenção/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Curcumina/farmacologia , Memória/efeitos dos fármacos , Placa Amiloide/tratamento farmacológico , Proteínas tau/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Anti-Inflamatórios não Esteroides/administração & dosagem , Encéfalo/diagnóstico por imagem , Curcumina/administração & dosagem , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Placebos , Tomografia por Emissão de Pósitrons , Resultado do Tratamento
13.
Neurosurgery ; 82(2): 237-246, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29136240

RESUMO

Currently, only presumptive diagnosis of chronic traumatic encephalopathy (CTE) can be made in living patients. We present a modality that may be instrumental to the definitive diagnosis of CTE in living patients based on brain autopsy confirmation of [F-18]FDDNP-PET findings in an American football player with CTE. [F-18]FDDNP-PET imaging was performed 52 mo before the subject's death. Relative distribution volume parametric images and binding values were determined for cortical and subcortical regions of interest. Upon death, the brain was examined to identify the topographic distribution of neurodegenerative changes. Correlation between neuropathology and [F-18]FDDNP-PET binding patterns was performed using Spearman rank-order correlation. Mood, behavioral, motor, and cognitive changes were consistent with chronic traumatic myeloencephalopathy with a 22-yr lifetime risk exposure to American football. There were tau, amyloid, and TDP-43 neuropathological substrates in the brain with a differential topographically selective distribution. [F-18]FDDNP-PET binding levels correlated with brain tau deposition (rs = 0.59, P = .02), with highest relative distribution volumes in the parasagittal and paraventricular regions of the brain and the brain stem. No correlation with amyloid or TDP-43 deposition was observed. [F-18]FDDNP-PET signals may be consistent with neuropathological patterns of tau deposition in CTE, involving areas that receive the maximal shearing, angular-rotational acceleration-deceleration forces in American football players, consistent with distinctive and differential topographic vulnerability and selectivity of CTE beyond brain cortices, also involving midbrain and limbic areas. Future studies are warranted to determine whether differential and selective [F-18]FDDNP-PET may be useful in establishing a diagnosis of CTE in at-risk patients.


Assuntos
Lesão Encefálica Crônica/diagnóstico por imagem , Lesão Encefálica Crônica/etiologia , Encefalopatia Traumática Crônica/diagnóstico por imagem , Encefalopatia Traumática Crônica/patologia , Futebol Americano/lesões , Autopsia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Lesão Encefálica Crônica/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos
14.
Mol Imaging Biol ; 19(1): 120-129, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27379986

RESUMO

PURPOSE: Quantitative evaluation of tumor hypoxia based on H-1-(3-[18F]fluoro-2-hydroxypropyl)-2-nitroimidazole ([18F]FMISO) positron emission tomography (PET) can deliver important information for treatment planning in radiotherapy. However, the merits and limitations of different analysis methods in revealing the underlying physiological feature are not clear. This study aimed to assess these quantitative analysis methods with the support of immunohistological data. PROCEDURES: Sixteen nude mice bearing xenografted human squamous cell carcinomas (FaDu or CAL-33) were scanned using 2-h dynamic [18F]FMISO PET. Tumors were resected and sliced, and the hypoxia marker pimonidazole was immunostained followed by H&E staining. The pimonidazole signal was segmented using a k-means clustering algorithm, and the hypoxic fraction (HF) was calculated as the hypoxic area/viable tumor-tissue-area ratio pooled over three tissue slices from the apical, center, and basal layers. PET images were analyzed using various methods including static analysis [standard uptake value (SUV), tumor-to-blood ratio (T/B), tumor-to-muscle ratio (T/M)] and kinetic modeling (Casciari αk A , irreversible and reversible two-tissue compartment k 3, Thorwarth w A k 3, Patlak K i , Logan V d , Cho K), and correlated with HF. RESULTS: No significant correlation was found for static analysis. A significant correlation between k 3 of the irreversible two-tissue compartment model and HF was observed (r = 0.61, p = 0.01). The correlation between HF and αk A of the Casciari model could be improved through reducing local minima by testing more sets of initial values (r = 0.59, p = 0.02) or by reducing the model complexity by fixing three parameters (r = 0.63, p = 0.0008). CONCLUSIONS: With support of immunohistochemistry data, this study shows that various analysis methods for [18F]FMISO PET perform differently for assessment of tumor hypoxia. A better fitting quality does not necessarily mean a higher physiological correlation. Hypoxia PET analysis needs to consider both the mathematical stability and physiological fidelity. Based on the results of this study, preference should be given to the irreversible two-tissue compartment model as well as the Casciari model with reduced parameters.


Assuntos
Misonidazol/análogos & derivados , Tomografia por Emissão de Pósitrons/métodos , Hipóxia Tumoral , Animais , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Camundongos Nus , Misonidazol/química
15.
J Am Soc Nephrol ; 28(3): 802-810, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27620988

RESUMO

Kidneys contribute to glucose homeostasis by reabsorbing filtered glucose in the proximal tubules via sodium-glucose cotransporters (SGLTs). Reabsorption is primarily handled by SGLT2, and SGLT2-specific inhibitors, including dapagliflozin, canagliflozin, and empagliflozin, increase glucose excretion and lower blood glucose levels. To resolve unanswered questions about these inhibitors, we developed a novel approach to map the distribution of functional SGLT2 proteins in rodents using positron emission tomography with 4-[18F]fluoro-dapagliflozin (F-Dapa). We detected prominent binding of intravenously injected F-Dapa in the kidney cortexes of rats and wild-type and Sglt1-knockout mice but not Sglt2-knockout mice, and injection of SGLT2 inhibitors prevented this binding. Furthermore, imaging revealed only low levels of F-Dapa in the urinary bladder, even after displacement of kidney binding with dapagliflozin. Microscopic ex vitro autoradiography of kidney showed F-Dapa binding to the apical surface of early proximal tubules. Notably, in vivo imaging did not show measureable specific binding of F-Dapa in heart, muscle, salivary glands, liver, or brain. We propose that F-Dapa is freely filtered by the kidney, binds to SGLT2 in the apical membranes of the early proximal tubule, and is subsequently reabsorbed into blood. The high density of functional SGLT2 transporters detected in the apical membrane of the proximal tubule but not detected in other organs likely accounts for the high kidney specificity of SGLT2 inhibitors. Overall, these data are consistent with data from clinical studies on SGLT2 inhibitors and provide a rationale for the mode of action of these drugs.


Assuntos
Compostos Benzidrílicos/metabolismo , Glucosídeos/metabolismo , Túbulos Renais Proximais/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
16.
Neuroimage ; 146: 589-599, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27693611

RESUMO

OBJECTIVES: In brain 18F-FDG PET data intensity normalization is usually applied to control for unwanted factors confounding brain metabolism. However, it can be difficult to determine a proper intensity normalization region as a reference for the identification of abnormal metabolism in diseased brains. In neurodegenerative disorders, differentiating disease-related changes in brain metabolism from age-associated natural changes remains challenging. This study proposes a new data-driven method to identify proper intensity normalization regions in order to improve separation of age-associated natural changes from disease related changes in brain metabolism. METHODS: 127 female and 128 male healthy subjects (age: 20 to 79) with brain18F-FDG PET/CT in the course of a whole body cancer screening were included. Brain PET images were processed using SPM8 and were parcellated into 116 anatomical regions according to the AAL template. It is assumed that normal brain 18F-FDG metabolism has longitudinal coherency and this coherency leads to better model fitting. The coefficient of determination R2 was proposed as the coherence coefficient, and the total coherence coefficient (overall fitting quality) was employed as an index to assess proper intensity normalization strategies on single subjects and age-cohort averaged data. Age-associated longitudinal changes of normal subjects were derived using the identified intensity normalization method correspondingly. In addition, 15 subjects with clinically diagnosed Parkinson's disease were assessed to evaluate the clinical potential of the proposed new method. RESULTS: Intensity normalizations by paracentral lobule and cerebellar tonsil, both regions derived from the new data-driven coherency method, showed significantly better coherence coefficients than other intensity normalization regions, and especially better than the most widely used global mean normalization. Intensity normalization by paracentral lobule was the most consistent method within both analysis strategies (subject-based and age-cohort averaging). In addition, the proposed new intensity normalization method using the paracentral lobule generates significantly higher differentiation from the age-associated changes than other intensity normalization methods. CONCLUSION: Proper intensity normalization can enhance the longitudinal coherency of normal brain glucose metabolism. The paracentral lobule followed by the cerebellar tonsil are shown to be the two most stable intensity normalization regions concerning age-dependent brain metabolism. This may provide the potential to better differentiate disease-related changes from age-related changes in brain metabolism, which is of relevance in the diagnosis of neurodegenerative disorders.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/metabolismo , Fluordesoxiglucose F18/farmacocinética , Tomografia por Emissão de Pósitrons , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Feminino , Fluordesoxiglucose F18/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Processamento de Sinais Assistido por Computador , Adulto Jovem
17.
J Nucl Med ; 57(10): 1548-1555, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27363838

RESUMO

Measurement of cellular tracer uptake is widely applied to learn the physiologic status of cells and their interactions with imaging agents and pharmaceuticals. In-culture measurements have the advantage of less stress to cells. However, the tracer solution still needs to be loaded, unloaded, and purged from the cell culture during the measurements. Here, we propose a continuously infused microfluidic radioassay (CIMR) system for continuous in-culture measurement of cellular uptake. The system was tested to investigate the influence of the glucose concentration in cell culture media on 18F-FDG uptake kinetics. METHODS: The CIMR system consists of a microfluidic chip integrated with a flow-control unit and a positron camera. Medium diluted with radioactive tracer flows through a cell chamber continuously at low speed. Positrons emitted from the cells and from tracer in the medium are measured with the positron camera. The human cell lines SkBr3 and Capan-1 were incubated with media of 3 different glucose concentrations and then measured with 18F-FDG on the CIMR system. In addition, a conventional uptake experiment was performed. The relative uptake ratios between different medium conditions were compared. A cellular 2-compartment model was applied to estimate the cellular pharmacokinetics on CIMR data. The estimated pharmacokinetic parameters were compared with expressions of glucose transporter-1 (GLUT1) and hexokinase-2 measured by quantitative real-time polymerase chain reaction. RESULTS: The relative uptake ratios obtained from CIMR measurements correlated significantly with those from the conventional uptake experiments. The relative SDs of the relative uptake ratios obtained from the CIMR uptake experiments were significantly lower than those from the conventional uptake experiments. The fit of the cellular 2-compartment model to the 18F-FDG CIMR measurements was of high quality. For SkBr3, the estimated pharmacokinetic parameters k1 and k3 were consistent with the messenger RNA expression of GLUT1 and hexokinase-2: culturing with low glucose concentrations led to higher GLUT1 and hexokinase-2 expression as well as higher estimated k1 and k3 For Capan-1, the estimated k1 and k3 increased as the glucose concentration in the culture medium decreased, and this finding did not match the corresponding messenger RNA expression. CONCLUSION: The CIMR system captures dynamic uptake within the cell culture and enables estimation of the cellular pharmacokinetics.


Assuntos
Fluordesoxiglucose F18/metabolismo , Dispositivos Lab-On-A-Chip , Linhagem Celular Tumoral , Transportador de Glucose Tipo 1/genética , Hexoquinase/genética , Humanos , Cinética
18.
Brain Inform ; 3: 1-15, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27034916

RESUMO

Traumatic brain injury (TBI) is a major cause of mortality and morbidity, placing a significant financial burden on the healthcare system worldwide. Non-invasive neuroimaging technologies have been playing a pivotal role in the study of TBI, providing important information for surgical planning and patient management. Advances in understanding the basic mechanisms and pathophysiology of the brain following TBI are hindered by a lack of reliable image analysis methods for accurate quantitative assessment of TBI-induced structural and pathophysiological changes seen on anatomical and functional images obtained from multiple imaging modalities. Conventional region-of-interest (ROI) analysis based on manual labeling of brain regions is time-consuming and the results could be inconsistent within and among investigators. In this study, we propose a workflow solution framework that combined the use of non-linear spatial normalization of structural brain images and template-based anatomical labeling to automate the ROI analysis process. The proposed workflow solution is applied to dynamic PET scanning with 15O-water (0-10 min) and 18F-FDDNP (0-6 min) for measuring cerebral blood flow in patients with TBI.

19.
J Physiol ; 594(15): 4425-38, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27018980

RESUMO

KEY POINTS: Glucose transporters are central players in glucose homeostasis. There are two major classes of glucose transporters in the body, the passive facilitative glucose transporters (GLUTs) and the secondary active sodium-coupled glucose transporters (SGLTs). In the present study, we report the use of a non-invasive imaging technique, positron emission tomography, in mice aiming to evaluate the role of GLUTs and SGLTs in controlling glucose distribution and utilization. We show that GLUTs are most significant for glucose uptake into the brain and liver, whereas SGLTs are important in glucose recovery in the kidney. This work provides further support for the use of SGLT imaging in the investigation of the role of SGLT transporters in human physiology and diseases such as diabetes and cancer. ABSTRACT: The importance of sodium-coupled glucose transporters (SGLTs) and facilitative glucose transporters (GLUTs) in glucose homeostasis was studied in mice using fluorine-18 labelled glucose molecular imaging probes and non-invasive positron emission tomography (PET) imaging. The probes were: α-methyl-4-[F-18]-fluoro-4-deoxy-d-glucopyranoside (Me-4FDG), a substrate for SGLTs; 4-deoxy-4-[F-18]-fluoro-d-glucose (4-FDG), a substrate for SGLTs and GLUTs; and 2-deoxy-2-[F-18]-fluoro-d-glucose (2-FDG), a substrate for GLUTs. These radiolabelled imaging probes were injected i.v. into wild-type, Sglt1(-/-) , Sglt2(-/-) and Glut2(-/-) mice and their dynamic whole-body distribution was determined using microPET. The distribution of 2-FDG was similar to that reported earlier (i.e. it accumulated in the brain, heart, liver and kidney, and was excreted into the urinary bladder). There was little change in the distribution of 2-FDG in Glut2(-/-) mice, apart from a reduction in the rate of uptake into liver. The major differences between Me-4FDG and 2-FDG were that Me-4FDG did not enter the brain and was not excreted into the urinary bladder. There was urinary excretion of Me-4FDG in Sglt1(-/-) and Sglt2(-/-) mice. However, Me-4FDG was not reabsorbed in the kidney in Glut2(-/-) mice. There were no differences in Me-4FDG uptake into the heart of wild-type, Sglt1(-/-) and Sglt2(-/-) mice. We conclude that GLUT2 is important in glucose liver transport and reabsorption of glucose in the kidney along with SGLT2 and SGLT1. Complete reabsorption of Me-4FDG from the glomerular filtrate in wild-type mice and the absence of reabsorption in the kidney in Glut2(-/-) mice confirm the importance of GLUT2 in glucose absorption across the proximal tubule.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas de Transporte de Sódio-Glucose/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Desoxiglucose/análogos & derivados , Feminino , Radioisótopos de Flúor , Glucose/farmacocinética , Proteínas Facilitadoras de Transporte de Glucose/genética , Glucosídeos , Coração/diagnóstico por imagem , Rim/diagnóstico por imagem , Rim/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculos/diagnóstico por imagem , Músculos/metabolismo , Miocárdio/metabolismo , Tomografia por Emissão de Pósitrons , Proteínas de Transporte de Sódio-Glucose/genética , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/metabolismo
20.
Proc Natl Acad Sci U S A ; 112(16): E2039-47, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25848027

RESUMO

Chronic traumatic encephalopathy (CTE) is an acquired primary tauopathy with a variety of cognitive, behavioral, and motor symptoms linked to cumulative brain damage sustained from single, episodic, or repetitive traumatic brain injury (TBI). No definitive clinical diagnosis for this condition exists. In this work, we used [F-18]FDDNP PET to detect brain patterns of neuropathology distribution in retired professional American football players with suspected CTE (n = 14) and compared results with those of cognitively intact controls (n = 28) and patients with Alzheimer's dementia (AD) (n = 24), a disease that has been cognitively associated with CTE. [F-18]FDDNP PET imaging results in the retired players suggested the presence of neuropathological patterns consistent with models of concussion wherein brainstem white matter tracts undergo early axonal damage and cumulative axonal injuries along subcortical, limbic, and cortical brain circuitries supporting mood, emotions, and behavior. This deposition pattern is distinctively different from the progressive pattern of neuropathology [paired helical filament (PHF)-tau and amyloid-ß] in AD, which typically begins in the medial temporal lobe progressing along the cortical default mode network, with no or minimal involvement of subcortical structures. This particular [F-18]FDDNP PET imaging pattern in cases of suspected CTE also is primarily consistent with PHF-tau distribution observed at autopsy in subjects with a history of mild TBI and autopsy-confirmed diagnosis of CTE.


Assuntos
Lesão Encefálica Crônica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Nitrilas , Tomografia por Emissão de Pósitrons , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Tonsila do Cerebelo/microbiologia , Tonsila do Cerebelo/patologia , Autopsia , Estudos de Casos e Controles , Demografia , Humanos , Masculino , Mesencéfalo/microbiologia , Mesencéfalo/patologia , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA