Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
J Cheminform ; 16(1): 48, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685101

RESUMO

Previous studies have shown that the three-dimensional (3D) geometric and electronic structure of molecules play a crucial role in determining their key properties and intermolecular interactions. Therefore, it is necessary to establish a quantum chemical (QC) property database containing the most stable 3D geometric conformations and electronic structures of molecules. In this study, a high-quality QC property database, called QuanDB, was developed, which included structurally diverse molecular entities and featured a user-friendly interface. Currently, QuanDB contains 154,610 compounds sourced from public databases and scientific literature, with 10,125 scaffolds. The elemental composition comprises nine elements: H, C, O, N, P, S, F, Cl, and Br. For each molecule, QuanDB provides 53 global and 5 local QC properties and the most stable 3D conformation. These properties are divided into three categories: geometric structure, electronic structure, and thermodynamics. Geometric structure optimization and single point energy calculation at the theoretical level of B3LYP-D3(BJ)/6-311G(d)/SMD/water and B3LYP-D3(BJ)/def2-TZVP/SMD/water, respectively, were applied to ensure highly accurate calculations of QC properties, with the computational cost exceeding 107 core-hours. QuanDB provides high-value geometric and electronic structure information for use in molecular representation models, which are critical for machine-learning-based molecular design, thereby contributing to a comprehensive description of the chemical compound space. As a new high-quality dataset for QC properties, QuanDB is expected to become a benchmark tool for the training and optimization of machine learning models, thus further advancing the development of novel drugs and materials. QuanDB is freely available, without registration, at https://quandb.cmdrg.com/ .

3.
Molecules ; 29(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257208

RESUMO

TRPV1 channel agonists and antagonists, which have powerful analgesic effects without the addictive qualities associated with traditional analgesics, have become a focus area for the development of novel analgesics. In this study, quantitative structure-activity relationship (QSAR) models for three bioactive endpoints (Ki, IC50, and EC50) were successfully constructed using four machine learning algorithms: SVM, Bagging, GBDT, and XGBoost. These models were based on 2922 TRPV1 modulators and incorporated four types of molecular descriptors: Daylight, E-state, ECFP4, and MACCS. After the rigorous five-fold cross-validation and external test set validation, the optimal models for the three endpoints were obtained. For the Ki endpoint, the Bagging-ECFP4 model had a Q2 value of 0.778 and an R2 value of 0.780. For the IC50 endpoint, the XGBoost-ECFP4 model had a Q2 value of 0.806 and an R2 value of 0.784. For the EC50 endpoint, the SVM-Daylight model had a Q2 value of 0.784 and an R2 value of 0.809. These results demonstrate that the constructed models exhibit good predictive performance. In addition, based on the model feature importance analysis, the influence between substructure and biological activity was also explored, which can provide important theoretical guidance for the efficient virtual screening and structural optimization of novel TRPV1 analgesics. And subsequent studies on novel TRPV1 modulators will be based on the feature substructures of the three endpoints.


Assuntos
Algoritmos , Confiabilidade dos Dados , Aprendizado de Máquina , Relação Quantitativa Estrutura-Atividade , Analgésicos/farmacologia
4.
Chem Biol Drug Des ; 102(3): 409-423, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37489095

RESUMO

The transient receptor potential vanilloid 1 (TRPV1) channel belongs to the transient receptor potential channel superfamily and participates in many physiological processes. TRPV1 modulators (both agonists and antagonists) can effectively inhibit pain caused by various factors and have curative effects in various diseases, such as itch, cancer, and cardiovascular diseases. Therefore, the development of TRPV1 channel modulators is of great importance. In this study, the structure-based virtual screening and ligand-based virtual screening methods were used to screen compound databases respectively. In the structure-based virtual screening route, a full-length human TRPV1 protein was first constructed, three molecular docking methods with different precisions were performed based on the hTRPV1 structure, and a machine learning-based rescoring model by the XGBoost algorithm was constructed to enrich active compounds. In the ligand-based virtual screening route, the ROCS program was used for 3D shape similarity searching and the EON program was used for electrostatic similarity searching. Final 77 compounds were selected from two routes for in vitro assays. The results showed that 8 of them were identified as active compounds, including three hits with IC50 values close to capsazepine. In addition, one hit is a partial agonist with both agonistic and antagonistic activity. The mechanisms of some active compounds were investigated by molecular dynamics simulation, which explained their agonism or antagonism.


Assuntos
Aprendizado de Máquina , Simulação de Dinâmica Molecular , Humanos , Simulação de Acoplamento Molecular , Ligantes , Canais de Cátion TRPV
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA