Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Estuaries Coast ; 47(1): 76-90, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38130776

RESUMO

In coastal regions and marginal bodies of water, the increase in partial pressure of carbon dioxide (pCO2) in many instances is greater than that of the open ocean due to terrestrial (river, estuarine, and wetland) influences, decreasing buffering capacity and/or increasing water temperatures. Coastal oceans receive freshwater from rivers and groundwater as well as terrestrial-derived organic matter, both of which have a direct influence on coastal carbonate chemistry. The objective of this research is to determine if coastal marshes in Georgia, USA, may be "hot-spots" for acidification due to enhanced inorganic carbon sources and if there is terrestrial influence on offshore acidification in the South Atlantic Bight (SAB). The results of this study show that dissolved inorganic carbon (DIC) and total alkalinity (TA) are elevated in the marshes compared to predictions from conservative mixing of the freshwater and oceanic end-members, with accompanying pH around 7.2 to 7.6 within the marshes and aragonite saturation states (ΩAr) <1. In the marshes, there is a strong relationship between the terrestrial/estuarine-derived organic and inorganic carbon and acidification. Comparisons of pH, TA, and DIC to terrestrial organic material markers, however, show that there is little influence of terrestrial-derived organic matter on shelf acidification during this period in 2014. In addition, ΩAr increases rapidly offshore, especially in drier months (July). River stream flow during 2014 was anomalously low compared to climatological means; therefore, offshore influences from terrestrial carbon could also be decreased. The SAB shelf may not be strongly influenced by terrestrial inputs to acidification during drier than normal periods; conversely, shelf waters that are well-buffered against acidification may not play a significant role in mitigating acidification within the Georgia marshes. Supplementary Information: The online version contains supplementary material available at 10.1007/s12237-023-01261-3.

2.
Data Brief ; 51: 109758, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38053585

RESUMO

The Fukushima accident released short-lived Cs-134 and longer-lived Cs-137 to the ocean. The amount, although substantial, is much less than that produced during the atomic bomb tests 60 yrs ago. Cs-134 and Cs-137 are anthropogenic radionuclides and soluble in seawater; hence, the radioactivity can be used as a tracer for special events or currents. Samples of Cs-134 and Cs-137 in seawater were collected around Taiwan, including the Kuroshio, the northern South China Sea, the Taiwan Strait, and the southern East China Sea from 2018 to 2021. The average surface Cs-137 activity was 1.18±0.25 Bq m - 3, and the activities of Cs-134 samples were all under the detection limit. Complete data are archived, including sampling date, location, water depth, temperature, salinity, and Cs-137 activity; the total sample amount is 577.

3.
Mar Pollut Bull ; 182: 114026, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35963224

RESUMO

The Fukushima accident released short-lived Cs-134 and longer-lived Cs-137 to the ocean. The amount, although substantial, is much less than that produced during the atomic bomb tests 60 years ago. But, the latter has received little attention. Here we found only Cs-137 in waters near the origin of the Kuroshio. The speed of the Kuroshio current generally decreases with water depth, yet, the Cs-137 activity increases with depth to reach a subsurface maximum of 2.4 Bq m-3. As a result, a core of high Cs-137 flux, or a radiocesium stream, exists at approximately 200-400 m in depth. In total, the Kuroshio transports about 1 PBq year-1 Cs-137 northward between 121 and 123°E, 1000 times more than the 0.73-1.0 TBq year-1 discharged to the ocean at Fukushima in 2016-2018.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Radioisótopos de Césio/análise , Japão , Rios , Poluentes Radioativos da Água/análise
4.
Sci Total Environ ; 798: 149214, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333434

RESUMO

Seven cruises were carried out in a bay scallop (Argopecten irradians) farming area and its surrounding waters, North Yellow Sea, from March to November 2017 to study the dynamics of the carbonate system and its controlling factors. Results indicated that the studied parameters were highly variability over a range of spatiotemporal scales, comprehensively forced by various physical and biological processes. Mixing effect and scallop calcification played the most important role in the seasonal variation of total alkalinity (TAlk). For dissolved inorganic carbon (DIC), in addition to mixing, air-sea exchange and microbial activity, e.g. photosynthesis and microbial respiration processes, had more important effects on its dynamics. Different from the former, the changes of water pHT, partial pressure of CO2 (pCO2) and aragonite saturation state (ΩA) were mainly controlled by the combining of the temperature, air-sea exchange, microbial activity and scallop metabolic activities. In addition, the results indicated that massive scallop farming can significantly increase the DIC/TAlk ratio by reducing the TAlk concentration in seawater, thereby reducing the buffering capacity of the carbonate system in seawater especially for ΩA. Preliminary calculated, ~75.7 and ~45.5 µmol kg-1 of TAlk were removed from the surface and bottom waters respectively in one scallop cultivating cycle. If these carbonates cannot be replenished in time, it is likely to accelerate the acidification process of coastal waters. This study highlighted the control mechanism of the carbonate system under the influence of bay scallop farming, and provided useful information for revealing the potential link between human activities (shelled-mollusc mariculture) and coastal acidification.


Assuntos
Carbonatos , Pectinidae , Agricultura , Animais , Carbonatos/análise , China , Humanos , Concentração de Íons de Hidrogênio , Água do Mar , Frutos do Mar
5.
Artigo em Inglês | MEDLINE | ID: mdl-33807030

RESUMO

The association between osteoporosis and periodontal disease (PD) has been revealed by previous studies, but there have been few studies on the association in younger adults. We enrolled a total of 7298 adults aged 40 to 44 who underwent PD screening between 2003 and 2008. Data on quantitative ultrasound for the measurement of bone mineral density (BMD) were collected for the diagnostic criteria of osteopenia and osteoporosis. The Community Periodontal Index (CPI) was measured for defining PD. A multiple logistic regression model was used to assess the effect of low bone mass on the risk of PD. Of 7298 enrollees, 31% had periodontal pockets >3 mm, 36.2% had osteopenia, and 2.1% had osteoporosis. The 39.8% of PD prevalence was high in adults with osteoporosis, followed by 33.3% in osteopenia. A negative association was found between BMD and CPI value (p < 0.0001). Low bone mass was associated with the risk of PD (adjusted OR: 1.13; 95% CI:1.02-1.26) after adjusting the confounding factors, including age, gender, education level, overweight, smoking status, past history of osteoporosis, and diabetes mellitus. An association between BMD and PD among young adults was found. An intervention program for the prevention of PD and osteoporosis could be considered starting in young adults.


Assuntos
Doenças Ósseas Metabólicas , Osteoporose , Doenças Periodontais , Absorciometria de Fóton , Adulto , Densidade Óssea , Doenças Ósseas Metabólicas/diagnóstico por imagem , Doenças Ósseas Metabólicas/epidemiologia , Humanos , Pessoa de Meia-Idade , Osteoporose/diagnóstico por imagem , Osteoporose/epidemiologia , Doenças Periodontais/epidemiologia , Índice Periodontal , Fatores de Risco , Adulto Jovem
6.
Sci Rep ; 11(1): 5080, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658632

RESUMO

The Kuroshio-literally "the Black Stream"-is the most substantial current in the Pacific Ocean. It was called the Black Stream because this oligotrophic current is so nutrient-poor in its euphotic zone that the water appears black without the influence of phytoplankton and the associated, often colored dissolved organic matter. Yet, below the euphotic layer, nutrient concentrations increase with depth while current speed declines. Consequently, a core of maximum nutrient flux, the so-called nutrient stream, develops at a depth of roughly between 200 and 800 m. This poorly studied nutrient stream transports nutrients to and supports high productivity and fisheries on the East China Sea continental shelf; it also transports nutrients to and promotes increased productivity and fisheries in the Kuroshio Extension and the subarctic Pacific Ocean. Three modes of the Kuroshio nutrient stream are detected off SE Taiwan for the first time: one has a single-core; one has two cores that are apparently separated by the ridge at 120.6-122° E, and one has two cores that are separated by a southward flow above the ridge. More importantly, northward nutrient transports seem to have been increasing since 2015 as a result of a 30% increase in subsurface water transport, which began in 2013. Such a nutrient stream supports the Kuroshio's high productivity, such as on the East China Sea continental shelf and in the Kuroshio Extension SE of Japan.

7.
Sci Rep ; 11(1): 307, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431993

RESUMO

The La Niña of 2007/2008 was particularly strong, so was the southward flow of the cold, nutrient-rich Changjiang (Yangtze River) Diluted Water (CDW) when the winter monsoon started to blow in the fall. Here we use shipboard data in 2008 in two transects, one in the southwestern East China Sea and one in the southern Taiwan Strait, to show that as late as April in 2008 the CDW was still clearly identifiable when the winter monsoon had weakened. Waters as cold as 16 °C with a salinity lower than 30 still occupied the southwestern East China Sea. Waters of 17 °C and S < 32 could also be found off the coast of China in the central Taiwan Strait. The concentration of NO3 + NO2 was higher than 18 µmol L-1 at both places, which was as much as 40 times higher than the northward moving South China Sea (SCS) water to the east. As a result, the Changjiang River plume may be a significant source of nutrients, particularly N, to the oligotrophic, N-poor SCS, especially in the La Niña years. Indeed, colder and more turbid CDW was more intense and went farther south in 2008 compared with the normal springs of 2006, 2007 and 2009.

8.
Sci Total Environ ; 759: 143486, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33250257

RESUMO

In situ field investigations coupled with laboratory incubations were employed to explore the surface sedimentary phosphorus (P) cycle in a mariculture area adjacent to the Yangma Island suffering from summer hypoxia in the North Yellow Sea. Five forms of P were fractionated, namely exchangeable P (Ex-P), iron-bound P (FeP), authigenic apatite (CaP), detrital P (De-P) and organic P (OP). Total P (TP) varied from 13.42 to 23.88 µmol g-1 with the main form of inorganic P (IP). The benthic phosphate (DIP) fluxes were calculated based on incubation experiments. The results show that the sediment was an important source of P in summer with ~39% of the bioavailable P (BioP) recycled back into the water column. However, the sediment acted a sink of P in autumn. The benthic DIP fluxes were mainly controlled by the remobilizing of FeP, Ex-P and OP under contrasting redox conditions. In August (hypoxia season), ~0.92 µmol g-1 of FeP and ~0.52 µmol g-1 of OP could be transformed to DIP and released into water, while ~0.36 µmol g-1 of DIP was adsorbed to clay minerals. In November (non-hypoxia season), however, ~0.54 µmol g-1 of OP was converted into DIP, while ~0.55 µmol g-1 and ~0.28 µmol g-1 of DIP was adsorbed to clay minerals and bind to iron oxides. Furthermore, scallop farming activities also affected the P mobilization through biological deposition and reduced hydrodynamic conditions. The burial fluxes of P varied from 11.67 to 20.78 µmol cm-2 yr-1 and its burial efficiency was 84.7-100%, which was consistent with that in most of the marginal seas worldwide. This study reveals that hypoxia and scallop farming activities can significantly promote sedimentary P mobility, thereby causing high benthic DIP flux in coastal waters.


Assuntos
Pectinidae , Fósforo , Agricultura , Animais , China , Monitoramento Ambiental , Sedimentos Geológicos , Hipóxia , Oceanos e Mares , Fósforo/análise , Estações do Ano
9.
ACS Appl Mater Interfaces ; 12(22): 24984-24991, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32367710

RESUMO

A metal-oxide material (indium zinc oxide [IZO]) device with near-infrared (NIR) laser annealing was demonstrated on both glass and bendable plastic substrates (polycarbonate, polyethylene, and polyethylene terephthalate). After only 60 s, the sheet resistance of IZO films annealed with a laser was comparable to that of thermal-annealed devices at temperatures in the range of 200-300 °C (1 h). XPS, ATR, and AFM were used to investigate the changes in the sheet resistance and correlate them to the composition and morphology of the thin film. Finally, the NIR-laser-annealed IZO films were demonstrated to be capable of detecting changes in humidity and serving as a highly sensitive gas sensor of hydrogen sulfide (in ppb concentration), with room-temperature operation on a bendable substrate.

10.
Sci Rep ; 10(1): 7846, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398711

RESUMO

The Taiwan Strait (TS) connects two of the largest marginal seas in the world, namely the East China Sea (ECS) and the South China Sea (SCS). When the NE monsoon prevails, the fresh, nutrient-rich but P-limited China Coastal Current (CCC) flows southward. Yet, part of the CCC turns eastward after entering the TS and then turns back toward the ECS. In the southern TS, part of the salty, N-limited, northward TS current (TSC) in the eastern part of the strait turns westward and eventually returns to the SCS. That is, the TS acts like a quasi-cul-de-sac during the NE monsoon season. Based on 822 samples from 28 cruises, the highest Chl. a concentration occurs at a salinity around 32 even though the nutrient concentration is not the highest. Mixing the cold-fresh-eutrophic CCC water and the warm-salty-oligotrophic TSC water results in a more suitable condition for biological uptake in both the southern ECS and the northern SCS.

11.
Environ Int ; 134: 105258, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678662

RESUMO

Compared to rivers in Europe and North America, Chinese rivers that discharge into oceans have different organic carbon (OC) transport characteristics. Out of the top 25 largest rivers worldwide, three (Changjiang, Huanghe, and Zhujiang rivers) are located in China, along with numerous small rivers. Thus, synthesized estimates of total riverine OC flux from Chinese rivers into marginal seas are critical but remain deficient. In this study, we developed relationships between riverine OC (dissolved OC, or DOC, and particulate OC, or POC) and basin characteristic variables (basin population density, precipitation, and riverine suspended sediment concentration) to estimate annual riverine DOC and POC fluxes during 1953-2016. The results showed that rivers in mainland China transported 9.63 Tg C of OC to the marginal seas in 2008, with 4.61 Tg C of DOC and 5.02 Tg C of POC. Of this transported OC, 14.28% DOC and 17.49% POC were transported by small southeastern rivers, whose drainage areas covered only 6.68% of the total. Because of intensifying human activities, DOC export increased but POC export decreased during 1953-2016. Additionally, basin population growth and reservoir water capacity were the major factors for increasing DOC flux and decreasing POC flux, respectively. Overall, the DOC/POC ratio increased for OC transport in Chinese rivers. Therefore, this study is important for understanding human-induced impacts on environmental change and the carbon cycle in marginal seas.


Assuntos
Monitoramento Ambiental , Oceanos e Mares , Carbono , China , Rios
12.
Sci Rep ; 9(1): 5648, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30948738

RESUMO

The Taiwan Strait (TS) directly connects two of the richest fishing grounds in the world - the East China Sea (ECS) and the South China Sea (SCS). Carbon and nutrient supplies are essential for primary production and the Yangtze River is an important source for the ECS. However the ECS is severely P-limited. The TS transports an order of magnitude more carbon and a factor of two more phosphate (P) to the ECS than the Yangtze River does. To evaluate the temporal variability of these supplies, the total alkalinity (TA), dissolved inorganic carbon (DIC), nitrate plus nitrite (N), P, and silicate (Si) fluxes through the TS were estimated using empirical equations for these parameters and the current velocity, which was estimated using the Hybrid Coordinate Ocean Model (HYCOM). These empirical equations were derived from in situ salinity and temperature and measured chemical concentrations that were collected during 57 cruises (1995-2014) with a total of 2096 bottle samples. The 24-month moving averages of water, carbon, and nutrient fluxes significantly increase with time, so does the satellite chlorophyll a concentration. More importantly, the increased supply of the badly needed P from the TS is more than that from the Yangtze River.

13.
Sci Rep ; 8(1): 11650, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30076335

RESUMO

Submarine groundwater discharge (SGD) is the submarine seepage of all fluids from coastal sediments into the overlying coastal seas. It has been well documented that the SGD may contribute a great deal of allochthonous nutrients to the coastlines. It is, however, less known how much carbon enters the ocean via the SGD. Nutrients (NO3, NO2, NH4, PO4, SiO2), alkalinity and dissolved inorganic carbon (DIC) in the submarine groundwater were measured at 20 locations around Taiwan for the first time. The total N/P/Si yields from the SGD in Taiwan are respectively 3.28 ± 2.3 × 104, 2.6 ± 1.8 × 102 and 1.89 ± 1.33 × 104 mol/km2/a, compared with 9.5 ± 6.7 × 105 mol/km2/a for alkalinity and 8.8 ± 6.2 × 105 mol/km2/a for DIC. To compare with literature data, yields for the major estuary across the Taiwan Strait (Jiulong River) are comparable except for P which is extremely low. Primary production supported by these nutrient outflows is insufficient to compensate the DIC supplied by the SGD. As a result, the SGD helps making the coastal waters in Taiwan and Jiulong River heterotrophic.

14.
Sensors (Basel) ; 18(1)2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29271937

RESUMO

This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-µm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.


Assuntos
Impressão Tridimensional , Lasers
15.
Sci Total Environ ; 511: 692-702, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25616188

RESUMO

Artificial upwelling is considered a promising way to reduce the accumulation of anthropogenic carbon dioxide in the atmosphere. This practice could transport nutrient-rich deep water to the euphotic zone, enhance phytoplankton growth and consequently increase organic carbon exportation to the deep ocean via the biological pump. However, only a few studies quantitatively assess changes in oceanic CO2 uptake resulting from artificial upwelling. This article uses a simulation to examine the effect of hypothetical artificial upwelling-induced variations of CO2 fugacity in seawater (fCO2) using observed carbon and nutrient data from 14 stations, ranging from 21 to 43°N, in the West Philippine Sea (WPS), the East China Sea (ECS) and the Sea of Japan. Calculations are based on two basic assumptions: First, a near-field mixing of a nutrient-rich deep-ocean water plume in a stratified ocean environment is assumed to form given the presence of an artificial upwelling devise with appropriate technical parameters. Second, it is assumed that photosynthesis of marine phytoplankton could deplete all available nutrients following the stoichiometry of the modified Redfield ratio C/H/O/N/S/P=103.1/181.7/93.4/11.7/2.1/1. Results suggest artificial upwelling has significant effects on regional changes in sea-air differences (ΔfCO2sea-air) and the carbon sequestration potential (ΔfCO2mixed-amb). Large variations of ΔfCO2sea-air and ΔfCO2mixed-amb are shown to be associated with different regions, seasons and technical parameters of the artificial upwelling device. With proper design, it is possible to reverse the contribution of artificial upwelling from a strong CO2 source to sink. Thus, artificial upwelling has the potential to succeed as a geoengineering technique to sequester anthropogenic CO2, with appropriate technical parameters in the right region and season.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA