Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 8: 502, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28392784

RESUMO

Diarrhea is a leading cause of increased mortality in neonatal and young piglets. Aberration of the gut microbiota is one important factor in the etiology of piglet diarrhea. However, information regarding the structure and function of the gut microbiome in diarrheic neonatal piglets is limited. To investigate the composition and functional potential of the fecal microbiota in neonatal piglets, we performed 16S rRNA gene sequencing on 20 fecal samples from diarrheic piglets and healthy controls, and metagenomics sequencing on a subset of six samples. We found striking compositional and functional differences in fecal microbiota between diarrheic and healthy piglets. Neonatal piglet diarrhea was associated with increases in the relative abundance of Prevotella, Sutterella, and Campylobacter, as well as Fusobacteriaceae. The increased relative abundance of Prevotella was correlated with the reduction in Escherichia coli and the majority of beneficial bacteria that belonging to the Firmicutes phylum (e.g., Enterococcus, Streptococcus, Lactobacillus, Clostridium, and Blautia) in diarrheic piglets. The differentially functional gene abundances in diarrheic piglets were an increase in bacterial ribosome, and contributed primarily by the genera Prevotella, this indicates a growth advantage of the Prevotella in diarrheic conditions. Additional functional gene sets were associated with the reduction of polyamine transport, monosaccharide and sugar-specific PTS transport, amino acid transport, and two-component regulatory system. These profiles likely impact the ability to transport and uptake nutrients, as well as the ability to fight microbial infections in the piglet gut ecosystem. This work identifies a potential role for Prevotella in the community-wide microbial aberration and dysfunction that underpins the pathogenesis of piglet diarrhea. Identification of these microbial and functional signatures may provide biomarkers of neonatal piglet diarrhea.

2.
Genes (Basel) ; 7(7)2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27429004

RESUMO

The swine leukocyte antigens (SLAs) are the multigene families related to immune responses. Little is known about the effect of the DRA gene on diarrheal disease. This study reported the genetic diversity of the DRA gene in exons 1, 3 and 4 in 290 Chinese Yantai black pigs. No variation was identified in exon 3. In exon 1, three genotypes and two alleles were identified, generated by two single nucleotide polymorphisms (SNPs). In exon 4, there were eight genotypes and five alleles containing seven SNPs were detected with four SNPs being novel SNPs. The low polymorphism found in swine DRA is consistent with the concept that the DRA gene is highly conserved among all mammalian species. Statistical analyses indicated that the genotypes of exon 1 were not significantly associated with piglet diarrhea (p > 0.05); however, genotypes C4C4 (1.80 ± 0.33) and A4E4 (1.66 ± 0.25) of exon 4 were significantly susceptible to diarrhea (p < 0.01). These indicate that the particular genotypes of the DRA gene are susceptible to diarrheal disease, which provides valuable information for disease-resistance breeding in swine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA