Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 296: 122069, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36893653

RESUMO

The valid management of inflammation and precise inhibition of smooth muscle cells (SMCs) is regarded as a promising strategy for regulating vascular responses after stent implantation, yet posing huge challenges to current coating constructions. Herein, we proposed a spongy cardiovascular stent for the protective delivery of 4-octyl itaconate (OI) based on a "spongy skin" approach, and revealed the dual-regulation effects of OI for improving vascular remolding. We first constructed a "spongy skin" onto poly-l-lactic acid (PLLA) substrates, and realized the protective loading of OI with the highest dosage of 47.9 µg/cm2. Then, we verified the remarkable inflammation mediation of OI, and surprisingly revealed that the OI incorporation specifically inhibited SMC proliferation and phenotype switching, which contributed to the competitive growth of endothelial cells (EC/SMC ratio âˆ¼ 5.1). We further demonstrated that OI at a concentration of 25 µg/mL showed significant suppression of the TGF-ß/Smad pathway of SMCs, leading to the promotion of contractile phenotype and reduction of extracellular matrix. In vivo evaluation indicated that the successful delivery of OI fulfilled the inflammation regulation and SMCs inhibition, therefore suppressing the in-stent restenosis. This "spongy skin" based OI eluting system may serve as a new strategy for improving vascular remolding, and provides a potential concept for the treatment of cardiovascular diseases.


Assuntos
Reestenose Coronária , Humanos , Reestenose Coronária/prevenção & controle , Células Endoteliais/metabolismo , Stents , Inflamação/metabolismo
2.
ACS Appl Mater Interfaces ; 13(48): 57000-57008, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34816710

RESUMO

Porous surfaces have attracted tremendous interest for customized incorporation of functional agents on biomedical devices. However, the versatile preparation of porous structures on complicated devices remains challenging. Herein, we proposed a simple and robust method to fabricate "spongy skin" on diversified polymeric substrates based on non-solvent-induced phase separation (NIPS). Through the swelling and the subsequent phase separation process, interconnected porous structures were directly formed onto the polymeric substrates. The thickness and pore size could be regulated in the ranges of 5-200 and 0.3-0.75 µm, respectively. The fast capillary action of the porous structure enabled controllable loading and sustained release of ofloxacin and bovine albumin at a high loading dosage of 79.9 and 24.1 µg/cm2, respectively. We verified that this method was applicable to diversified materials including polymethyl methacrylate, polystyrene, thermoplastic polyurethane, polylactide acid, and poly(lactic-co-glycolic acid) and can be realized onto TCPS cell culture plates. This NIPS-based method is promising to generate porous surfaces on medical devices for incorporating therapeutic agents.


Assuntos
Materiais Biomiméticos/química , Polímeros/química , Animais , Bovinos , Células Cultivadas , Humanos , Teste de Materiais , Ofloxacino/química , Tamanho da Partícula , Porosidade , Soroalbumina Bovina/síntese química , Propriedades de Superfície
3.
Bioact Mater ; 6(12): 4686-4696, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34095625

RESUMO

The in-stent restenosis (IRS) after the percutaneous coronary intervention contributes to the major treatment failure of stent implantation. MicroRNAs have been revealed as powerful gene medicine to regulate endothelial cells (EC) and smooth muscle cells (SMC) in response to vascular injury, providing a promising therapeutic candidate to inhibit IRS. However, the controllable loading and eluting of hydrophilic bioactive microRNAs pose a challenge to current lipophilic stent coatings. Here, we developed a microRNA eluting cardiovascular stent via the self-healing encapsulation process based on an amphipathic poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL, PCEC) triblock copolymer spongy network. The miR-22 was used as a model microRNA to regulate SMC. The dynamic porous coating realized the uniform and controllable loading of miR-22, reaching the highest dosage of 133 pmol cm-2. We demonstrated that the sustained release of miR-22 dramatically enhanced the contractile phenotype of SMC without interfering with the proliferation of EC, thus leading to the EC dominating growth at an EC/SMC ratio of 5.4. More importantly, the PCEC@miR-22 coated stents showed reduced inflammation, low switching of SMC phenotype, and low secretion of extracellular matrix, which significantly inhibited IRS. This work provides a simple and robust coating platform for the delivery of microRNAs on cardiovascular stent, which may extend to other combination medical devices, and facilitate practical application of bioactive agents in clinics.

4.
Adv Sci (Weinh) ; 8(15): e2100402, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34047069

RESUMO

Periodic porous structures have been introduced into functional films to meet the requirements of various applications. Though many approaches have been developed to generate desired structures in polymeric films, few of them can effectively and dynamically achieve periodic porous structures. Here, a facile way is proposed to introduce periodic stratified porous structures into polyelectrolyte films. A photo-crosslinkable polyelectrolyte film of poly(ethylenimine) (PEI) and photoreactive poly(acrylic acid) derivative (PAA-N3 ) is prepared by layer-by-layer (LbL) self-assembly. Stratified crosslinking of the PEI/PAA-N3 film is generated basing on standing-wave optics. The periodic stratified porous structure is constructed by forming pores in noncrosslinked regions in the film. Thanks to the dynamic mobility of polyelectrolytes, this structural controlment can be repeated several times. The size of pores corresponding to the layer spacing of the film contributes to the structural colors. Furthermore, structural color patterns are fabricated in the film by selective photo-crosslinking using photomasks. Although the large-scale structural controlment in thick (micron-scale and above) films needs to be explored further, this work highlights the periodic structural controlment in polymeric films and thus presents an approach for application potentials in sensor, detection, and ink-free printing.

5.
Bioact Mater ; 6(5): 1413-1422, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33210033

RESUMO

Stiffening of blood vessels is one of the most important characteristics in the process of many cardiovascular pathologies such as atherosclerosis, angiosteosis, and vascular aging. Increased stiffness of the vascular extracellular matrix drives artery pathology and alters phenotypes of vascular cell. Understanding how substrate stiffness impacts vascular cell behaviors is of great importance to the biomaterial design in tissue engineering, regenerative medicine, and medical devices. Here we report that changing substrate stiffness has a significant impact on the autophagy of vascular endothelial cells (VECs) and smooth muscle cells (VSMCs). Interestingly, our findings demonstrate that, with the increase of substrate stiffness, the autophagy level of VECs and VSMCs showed differential changes: endothelial autophagy levels reduced, leading to the reductions in a range of gene expression associated with endothelial function; while, autophagy levels of VSMCs increased, showing a transition from contractile to the synthetic phenotype. We further demonstrate that, by inhibiting cell autophagy, the expressions of endothelial functional gene were further reduced and the expression of VSMC calponin increased, suggesting an important role of autophagy in response of the cells to the challenge of microenvironment stiffness changing. Although the underlying mechanism requires further study, this work highlights the relationship of substrate stiffness, autophagy, and vascular cell behaviors, and enlightening the design principles of surface stiffness of biomaterials in cardiovascular practical applications.

6.
ACS Appl Mater Interfaces ; 12(37): 42081-42088, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32937689

RESUMO

Inspired by nature, many functional surfaces have been developed with special structures in biology, chemistry, and materials. Many research studies have been focused on the preparation of surfaces with static structure. Achieving dynamical manipulation of surface structure is desired but still a great challenge. Herein, a polyelectrolyte film capable of regional and reversible changes in the microporous structure is presented. Our proposal is based on the combination of azobenzene (Azo) π-π stacking and electrostatic interaction, which could be affected respectively by ultraviolet (UV) irradiation and water plasticization, to tune the mobility of polyelectrolyte chains. The porous patterns can be obtained after regional ultraviolet irradiation and acid treatment. Owing to the reversibility of Azo π-π stacking and electrostatic interaction, the patterns can be repeatedly created and erased in the polyelectrolyte film made by layer-by-layer (LbL) self-assembly of poly(ethyleneimine)-azo and poly(acrylic acid). Furthermore, through two rounds of porous pattern formation and erasure, different functional species can be loaded separately and confined regionally within the film, showing potential applications in the functional surface. This work highlights the coordination of two noncovalent interactions in thin films for regional and reversible controlling its structure, opening a window for more in-depth development of functional surfaces.

7.
Small ; 15(9): e1804867, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30677229

RESUMO

Although many approaches have been developed to encapsulate functional species into polyelectrolyte films, few of them can effectively control the final distribution of these ones. Herein, a facile strategy is proposed to spatially control the encapsulation of guest species by locally regulating the structural transformation of polyelectrolyte films. Patterned porosity is created within a film by cross-linking it selectively and then immersing it in an acidic solution. These porous regions can exhibit significantly different properties from other regions, including the ability to wick solution, a greater retention of guest species, and the capability of structural transformation. After loading guest species, the porous structures can be eliminated at saturated humidity to encapsulate the guest species into the film, leading to their patterned distribution across the film. Based on this method, various guest species, ranging from fluorescent dyes to nanoparticles, can be locally encapsulated into polyelectrolyte film, forming distinct patterns of arbitrary shapes and sizes and thus paving the way for further applications.

8.
ACS Appl Bio Mater ; 2(6): 2676-2684, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35030722

RESUMO

Surface-mediated transfection has drawn tremendous interest for gene therapy due to its localized gene delivery characteristic and promising perspective for combination devices in clinical applications. However, a method for the controllable load of genetic agents and tunable transfection efficiency to primary cells remains unsatisfactory. Herein, we present a polymeric spongy film with modification of polydopamine (PDA) for controlling load of plasmid DNAs and improving transfection to primary endothelial cells. We demonstrate that, via wicking action, the loading of DNA into the film is simple, rapid, and highly controllable while easily reaching ∼95 µg/cm2 by only a one-shot loading process. Meanwhile, PDA endows the spongy films with a very good photothermal conversion capability. Consequently, we obtain an enhanced transfection up to ∼85% to hard-to-transfect primary endothelial cells upon NIR irradiation. Furthermore, we realize a spatial cell transfection through NIR irradiation in the defined area, suggesting a high potential for precise gene therapy. This photothermal spongy film could serve as a robust platform for surface-mediated gene therapy, and extend the paradigm of a light enhanced delivery system.

9.
ACS Nano ; 12(8): 8686-8696, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30106556

RESUMO

Spatially controlling the evolution of surface structures may provide an effective strategy for patterning surface roughness and facilitating the construction of various functional surfaces. In this study, we report a photo-cross-linkable polymeric film with dynamic surface micro/nanostructures. The surface structures of the un-cross-linked regions can be eliminated under saturated humidity, which can be utilized to create patterned roughness on the film. One potential application of this patternable platform is as a "smart" label material for graphical symbols. Various graphical symbols can be programmed onto this film by partially erasing its surface roughness, enabling visibility due to the difference in light scattering between different areas of the film. When a thus-prepared label was blurred by mechanical scratches, it could be healed under saturated humidity, and its original readability could be fully restored. Furthermore, the patterned rough surface created using our approach can also be very useful in many other research fields, such as surface wettability and cell behavior manipulation.

10.
J Phys Ther Sci ; 27(2): 495-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25729200

RESUMO

[Purpose] This study aimed to determine the effectiveness of joystick-controlled video console games in enhancing subjects' ability to control power wheelchairs. [Subjects and Methods] Twenty healthy young adults without prior experience of driving power wheelchairs were recruited. Four commercially available video games were used as training programs to practice joystick control in catching falling objects, crossing a river, tracing the route while floating on a river, and navigating through a garden maze. An indoor power wheelchair driving test, including straight lines, and right and left turns, was completed before and after the video game practice, during which electromyographic signals of the upper limbs were recorded. The paired t-test was used to compare the differences in driving performance and muscle activities before and after the intervention. [Results] Following the video game intervention, participants took significantly less time to complete the course, with less lateral deviation when turning the indoor power wheelchair. However, muscle activation in the upper limbs was not significantly affected. [Conclusion] This study demonstrates the feasibility of using joystick-controlled commercial video games to train individuals in the control of indoor power wheelchairs.

11.
Res Dev Disabil ; 34(11): 4017-24, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24036390

RESUMO

Physical fitness in children with cerebral palsy (CP) is lower than in their peers. A 12-week individualized home-based exercise program completed by 11 children with CP 10 years earlier showed a favorable effect on physical fitness performance. We follow-up the physical fitness of those 11 children with CP, and compare their physical fitness and health-related quality of life (HRQoL) to children with CP without exercise training matched with age and motor levels. Eleven children with CP in the 2003 program as a follow-up group (FUG) and 12 volunteers recruited as a control group (CG) participated in this study. Physical fitness measures, including cardiopulmonary endurance, muscle strength, body mass index (BMI), flexibility, agility, balance, and the SF-36 Taiwan version, were assessed in both groups. After 10 years, the FUG showed better physical fitness in cardiopulmonary endurance and muscle strength (p<.05). Compared to the CG, the FUG demonstrated better muscle strength, agility, and balance (p<.05). However, the HRQoL did not show a significant difference between the FUG and the CG. Individualized home-based exercise training is beneficial for children with CP. Over 10 years, the FUG was more devoted to physical activity than was the CG. Physical exercise may not directly affect the HRQoL in this study.


Assuntos
Paralisia Cerebral/reabilitação , Terapia por Exercício/métodos , Nível de Saúde , Aptidão Física , Qualidade de Vida , Adolescente , Índice de Massa Corporal , Estudos de Casos e Controles , Criança , Teste de Esforço , Feminino , Seguimentos , Humanos , Masculino , Força Muscular , Músculo Esquelético , Resistência Física , Equilíbrio Postural , Amplitude de Movimento Articular , Taiwan , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA