Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
J Hazard Mater ; 480: 136114, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39405669

RESUMO

This study aims to examine the association between temperature variabilit (TV) exposure and influenza incidence in China, and the modification effect of PM2.5 levels. Data on daily influenza cases, weather conditions, and PM2.5 concentrations were collected from 339 cities across mainland China from 2014 to 2019. TV was computed as the standard deviation of daily maximum and minimum temperatures for the current day and the previous several days (i.e., TV0-1 to TV0-7). A space-time-stratified case-crossover design with conditional Poisson regression was employed. Overall, each 1 °C increase in TV0-6 was linked to 3.3 % (95 % CI: 3.1 %, 3.5 %) rise in influenza incidence, potentially attributing 14.73 % (95 % CI: 14.08 %, 15.37 %) of cases to this exposure. PM2.5 concentration showed substantial modification effect on the association, such that the relative risk (RR) of influenza incidence grew from 1.027 (95 % CI: 1.025, 1.029) to 1.040 (95 % CI: 1.038, 1.042) as PM2.5 levels increased from 15 to 75 µg/m³ . Females and individuals over 65 years old were more susceptible to TV exposure and the PM2.5 modification. Stronger effects were observed during cold season and in North region. The findings highlight the integrating considerations of TV and PM2.5 exposures into public health measures for influenza prevention and control.

2.
Dalton Trans ; 53(39): 16134-16143, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39264277

RESUMO

Due to the highly reductive capacity of nano zero-valent iron (nZVI) nanoparticles, the reduction of nitrate (NO3--N) is prone to produce ammonia nitrogen (NH4+-N) as a by-product and has low selectivity for nitrogen gas (N2). Water and dissolved oxygen (DO) in the solution consume electrons from nZVI, decreasing the efficiency of NO3--N reduction. In order to overcome the drawbacks of plain nZVI being used to remove NO3--N pollution, nZVI-based multifunctional materials have been constructed to realize the selective conversion of NO3--N to N2 as well as the efficient removal of NO3--N. Therefore, advanced research on the reduction of NO3--N by nZVI-based composites has been comprehensively reviewed. Strategies to improve NO3--N reduction efficiency and N2 selectivity are proposed. Moreover, the shortcomings of iron-based nanomaterials in NO3--N pollution control have been summarized, and some suggestions for future research directions provided.

3.
Ecotoxicol Environ Saf ; 285: 117023, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278001

RESUMO

Wildfires have devastating effects on society and public health. However, little evidence from population-based cohort has been performed to analyze the relationship of wildfire-related PM2.5, an important component of wildfire smoke, with cancer-specific mortality. We aimed to explore this relationship and identify vulnerable populations in UK with lower levels of wildfire-related PM2.5 exposure. The study consisted of 492394 participants (age: 38-73 years) recruited by UK Biobank during 2004-2010. The cumulative wildfire-related PM2.5 within 10 kilometers of residence over three years was used as exposure, which was assessed by chemical transport and machine learning models. A time-varying Cox regression was utilized to explore the relationship of exposure with diverse cancer-specific mortality outcomes. Subgroup analyses of a range of potential modifiers were performed. Each 10 µg/m3 increment of 3-year cumulative exposure was related to a 0.4 % greater risk of total cancer (95 %CI: 1.001-1.007), a 1.1 % greater risk of lung cancer (95 %CI: 1.004-1.018), and a 2.7 % greater risk of lip, oral cavity and pharynx (LOP) cancer (95 %CI: 1.005-1.049). Higher vulnerability in the wildfire-related PM2.5-lung cancer relationship was found among participants being retired than those with other employment status. Even lower levels of exposure to PM2.5 from wildfires were related to elevated mortality risks for cancer from total, lung, LOP, highlighting the importance of wildfire prevention and control. Further investigations are warranted to enrich and extend existing knowledge in this field.


Assuntos
Poluentes Atmosféricos , Neoplasias , Material Particulado , Incêndios Florestais , Humanos , Pessoa de Meia-Idade , Material Particulado/análise , Neoplasias/mortalidade , Neoplasias/induzido quimicamente , Idoso , Masculino , Feminino , Adulto , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/efeitos adversos , Reino Unido/epidemiologia , Exposição Ambiental/estatística & dados numéricos , Exposição Ambiental/efeitos adversos , Fumaça/efeitos adversos , Estudos de Coortes
4.
Lancet Planet Health ; 8(9): e629-e639, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39243779

RESUMO

BACKGROUND: The proportion of intense tropical cyclones is expected to increase in a changing climate. However, there is currently no consistent and comprehensive assessment of infectious disease risk following tropical cyclone exposure across countries and over decades. We aimed to explore the tropical cyclone-associated hospitalisation risks and burden for cause-specific infectious diseases on a multi-country scale. METHODS: Hospitalisation records for infectious diseases were collected from six countries and territories (Canada, South Korea, New Zealand, Taiwan, Thailand, and Viet Nam) during various periods between 2000 and 2019. The days with tropical cyclone-associated maximum sustained windspeeds of 34 knots or higher derived from a parametric wind field model were considered as tropical cyclone exposure days. The association of monthly infectious diseases hospitalisations and tropical cyclone exposure days was first examined at location level using a distributed lag non-linear quasi-Poisson regression model, and then pooled using a random-effects meta-analysis. The tropical cyclone-attributable number and fraction of infectious disease hospitalisations were also calculated. FINDINGS: Overall, 2·2 million people who were hospitalised for infectious diseases in 179 locations that had at least one tropical cyclone exposure day in the six countries and territories were included in the analysis. The elevated hospitalisation risks for infectious diseases associated with tropical cyclones tended to dissipate 2 months after the tropical cyclone exposure. Overall, each additional tropical cyclone day was associated with a 9% (cumulative relative risk 1·09 [95% CI 1·05-1·14]) increase in hospitalisations for all-cause infectious diseases, 13% (1·13 [1·05-1·21]) for intestinal infectious diseases, 14% (1·14 [1·05-1·23]) for sepsis, and 22% (1·22 [1·03-1·46]) for dengue during the 2 months after a tropical cyclone. Associations of tropical cyclones with hospitalisations for tuberculosis and malaria were not significant. In total, 0·72% (95% CI 0·40-1·01) of the hospitalisations for all-cause infectious diseases, 0·33% (0·15-0·49) for intestinal infectious diseases, 1·31% (0·57-1·95) for sepsis, and 0·63% (0·10-1·04) for dengue were attributable to tropical cyclone exposures. The attributable burdens were higher among young populations (aged ≤19 years) and male individuals compared with their counterparts, especially for intestinal infectious diseases. The heterogeneous spatiotemporal pattern was further revealed at the country and territory level-tropical cyclone-attributable fractions showed a decreasing trend in South Korea during the study period but an increasing trend in Viet Nam, Taiwan, and New Zealand. INTERPRETATION: Tropical cyclones were associated with persistent elevated hospitalisation risks of infectious diseases (particularly sepsis and intestinal infectious diseases). Targeted interventions should be formulated for different populations, regions, and causes of infectious diseases based on evidence on tropical cyclone epidemiology to respond to the increasing risk and burden. FUNDING: Australian Research Council, Australian National Health, and Medical Research Council.


Assuntos
Doenças Transmissíveis , Tempestades Ciclônicas , Hospitalização , Humanos , Hospitalização/estatística & dados numéricos , Doenças Transmissíveis/epidemiologia , Nova Zelândia/epidemiologia , Vietnã/epidemiologia , República da Coreia/epidemiologia , Taiwan/epidemiologia , Canadá/epidemiologia , Tailândia/epidemiologia
5.
Sci Total Environ ; 954: 176203, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270867

RESUMO

Metabolic syndrome (MetS) is a significant public health problem and presents an escalating clinical challenge globally. To combat this problem effectively, urgent measures including identify some modifiable environmental factors are necessary. Outdoor artificial light at night (LAN) exposure garnered much attention due to its impact on circadian rhythms and metabolic process. However, epidemiological evidence on the association between outdoor LAN exposure and MetS remains limited. To determine the relationship between outdoor LAN exposure and MetS, 15,477 adults participated the 33 Communities Chinese Health Study (33CCHS) in 2009 were evaluated. Annual levels of outdoor LAN exposure at participants' residential addresses were assessed using satellite data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS). Generalized linear mixed effect models were utilized to assess the association of LAN exposure with MetS and its components, including elevated waist circumference (WC), triglycerides (TG), blood pressure (BP), fasting blood glucose (FBG), and reduced high-density lipoprotein cholesterol (HDL-C). Effect modification by various social demographic and behavior factors was also examined. Overall, 4701 (30.37 %) participants were defined as MetS. The LAN exposure ranged from 6.03 to 175.00 nW/cm2/sr. The adjusted odds ratio (OR) of MetS each quartile increment of LAN exposure were 1.43 (95 % CI: 1.21-1.69), 1.44 (95 % CI: 1.19-1.74) and 1.52 (95 % CI: 1.11-2.08), respectively from Q2-Q4. Similar adverse associations were also found for the components of MetS, especially for elevated BP, TG and FBG. Interaction analyses indicated that the above associations were stronger in participants without habitual exercise compared with those with habitual exercise (e.g. OR were 1.52 [95 % CI: 1.28-1.82] vs. 1.27 [95 % CI, 1.04-1.55], P-interaction = 0.042 for MetS). These findings suggest that long-term exposure to LAN can have a significant deleterious effect on MetS, potentially making LAN an important modifiable environmental factor to target in future preventive strategies.

6.
Lancet Planet Health ; 8(8): e554-e563, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39122324

RESUMO

BACKGROUND: Exposure to floods might increase the risks of adverse birth outcomes. However, the current evidence is scarce, inconsistent, and has knowledge gaps. This study aims to estimate the associations of flood exposure before and during pregnancy with adverse birth outcomes and to identify susceptible exposure windows and effect modifiers. METHODS: In this cohort study, we obtained all the birth records occurring in Greater Sydney, Australia, from Jan 1, 2001, to Dec 31, 2020, from the New South Wales Midwives Data Collection and in the Brisbane metropolitan region, Australia, from Jan 1, 1995, to Dec 31, 2014, from the Queensland Health Perinatal Data Collection. For each birth, residential address and historical flood information from the Dartmouth Flood Observatory were used to estimate the numbers of days with floods during five exposure windows (Pre-1 was defined as 13-24 weeks before the last menstrual period [LMP], Pre-2 was 0-12 weeks before the LMP, trimester 1 [Tri-1] was 0-12 weeks after the LMP, trimester 2 [Tri-2] was 13-28 weeks after the LMP, and trimester 3 [Tri-3] was ≥29 weeks after the LMP). We estimated the hazard ratios (HRs) of adverse birth outcomes (preterm births, stillbirths, term low birthweight [TLBW], and small for gestational age [SGA]) associated with flood exposures in the five exposure windows using Cox proportional hazards regression models. FINDINGS: 1 338 314 birth records were included in our analyses, which included 91 851 (6·9%) preterm births, 9831 (0·7%) stillbirths, 25 567 (1·9%) TLBW, and 108 658 (8·1%) SGA. Flood exposure in Pre-1 was associated with increased risks of TLBW (HR 1·06 [95% CI 1·01-1·12]) and SGA (1·04 [1·01-1·06]); flood exposure during Tri-1 was associated with increased risks of preterm births (1·03 [1·002-1·05]), stillbirth (1·11 [1·03-1·20]), and SGA (1·03 [1·01-1·06]). In contrast, flood exposures during Pre-2 and Tri-3 were associated with reduced risks. INTERPRETATION: Exposures to floods in Pre-1 and Tri-1 are both associated with increased risks of adverse birth outcomes, and the risks increase with a higher exposure. Upon planning for conception and prenatal care, individuals and health practitioners should raise awareness of the increased risks of adverse birth outcomes after experiencing floods. FUNDING: The Australian Research Council and the Australian National Health and Medical Research Council.


Assuntos
Inundações , Resultado da Gravidez , Nascimento Prematuro , Humanos , Feminino , Gravidez , Estudos de Coortes , Resultado da Gravidez/epidemiologia , Nascimento Prematuro/epidemiologia , Recém-Nascido , Adulto , Austrália/epidemiologia , Recém-Nascido Pequeno para a Idade Gestacional , Adulto Jovem , Recém-Nascido de Baixo Peso , Exposição Materna/efeitos adversos , Exposição Materna/estatística & dados numéricos
7.
Int J Cancer ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985095

RESUMO

Exposure to ambient ozone (O3) is linked to increased mortality risks from various diseases, but epidemiological investigations delving into its potential implications for cancer mortality are limited. We aimed to examine the association between short-term O3 exposure and site-specific cancer mortality and investigate vulnerable subgroups in Brazil. In total 3,459,826 cancer death records from 5570 Brazilian municipalities between 2000 and 2019, were included. Municipal average daily O3 concentration was calculated from a global estimation at 0.25°×0.25° spatial resolution. The time-stratified case-crossover design was applied to assess the O3-cancer mortality association. Subgroup analyses by age, sex, season, time-period, region, urban hierarchy, climate classification, quantiles of GDP per capita and illiteracy rates were performed. A linear and non-threshold exposure-response relationship was observed for short-term exposure to O3 with cancer mortality, with a 1.00% (95% CI: 0.79%-1.20%) increase in all-cancer mortality risks for each 10-µg/m3 increment of three-day average O3. Kidney cancer was most strongly with O3 exposure, followed by cancers of the prostate, stomach, breast, lymphoma, brain and lung. The associated cancer risks were relatively higher in the warm season and in southern Brazil, with a decreasing trend over time. When restricting O3 concentration to the national minimum value during 2000-2019, a total of 147,074 (116,690-177,451) cancer deaths could be avoided in Brazil, which included 17,836 (7014-28,653) lung cancer deaths. Notably, these associations persisted despite observed adaptation within the Brazilian population, highlighting the need for a focus on incorporating specific measures to mitigate O3 exposure into cancer care recommendations.

8.
Diabetes Care ; 47(9): 1664-1672, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39012781

RESUMO

OBJECTIVE: To evaluate associations of wildfire fine particulate matter ≤2.5 mm in diameter (PM2.5) with diabetes across multiple countries and territories. RESEARCH DESIGN AND METHODS: We collected data on 3,612,135 diabetes hospitalizations from 1,008 locations in Australia, Brazil, Canada, Chile, New Zealand, Thailand, and Taiwan during 2000-2019. Daily wildfire-specific PM2.5 levels were estimated through chemical transport models and machine-learning calibration. Quasi-Poisson regression with distributed lag nonlinear models and random-effects meta-analysis were applied to estimate associations between wildfire-specific PM2.5 and diabetes hospitalization. Subgroup analyses were by age, sex, location income level, and country or territory. Diabetes hospitalizations attributable to wildfire-specific PM2.5 and nonwildfire PM2.5 were compared. RESULTS: Each 10 µg/m3 increase in wildfire-specific PM2.5 levels over the current day and previous 3 days was associated with relative risks (95% CI) of 1.017 (1.011-1.022), 1.023 (1.011-1.035), 1.023 (1.015-1.032), 0.962 (0.823-1.032), 1.033 (1.001-1.066), and 1.013 (1.004-1.022) for all-cause, type 1, type 2, malnutrition-related, other specified, and unspecified diabetes hospitalization, respectively. Stronger associations were observed for all-cause, type 1, and type 2 diabetes in Thailand, Australia, and Brazil; unspecified diabetes in New Zealand; and type 2 diabetes in high-income locations. An estimate of 0.67% (0.16-1.18%) and 1.02% (0.20-1.81%) for all-cause and type 2 diabetes hospitalizations were attributable to wildfire-specific PM2.5. Compared with nonwildfire PM2.5, wildfire-specific PM2.5 posed greater risks of all-cause, type 1, and type 2 diabetes and were responsible for 38.7% of PM2.5-related diabetes hospitalizations. CONCLUSIONS: We show the relatively underappreciated links between diabetes and wildfire air pollution, which can lead to a nonnegligible proportion of PM2.5-related diabetes hospitalizations. Precision prevention and mitigation should be developed for those in advantaged communities and in Thailand, Australia, and Brazil.


Assuntos
Diabetes Mellitus , Hospitalização , Material Particulado , Incêndios Florestais , Humanos , Hospitalização/estatística & dados numéricos , Material Particulado/análise , Material Particulado/efeitos adversos , Masculino , Austrália/epidemiologia , Pessoa de Meia-Idade , Feminino , Diabetes Mellitus/epidemiologia , Idoso , Tailândia/epidemiologia , Nova Zelândia/epidemiologia , Brasil/epidemiologia , Canadá/epidemiologia , Taiwan/epidemiologia , Adulto , Exposição Ambiental/efeitos adversos , Exposição Ambiental/estatística & dados numéricos
9.
J Am Coll Cardiol ; 83(23): 2276-2287, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38839202

RESUMO

BACKGROUND: The association between nonoptimal temperatures and cardiovascular mortality risk is recognized. However, a comprehensive global assessment of this burden is lacking. OBJECTIVES: The goal of this study was to assess global cardiovascular mortality burden attributable to nonoptimal temperatures and investigate spatiotemporal trends. METHODS: Using daily cardiovascular deaths and temperature data from 32 countries, a 3-stage analytical approach was applied. First, location-specific temperature-mortality associations were estimated, considering nonlinearity and delayed effects. Second, a multivariate meta-regression model was developed between location-specific effect estimates and 5 meta-predictors. Third, cardiovascular deaths associated with nonoptimal, cold, and hot temperatures for each global grid (55 km × 55 km resolution) were estimated, and temporal trends from 2000 to 2019 were explored. RESULTS: Globally, 1,801,513 (95% empirical CI: 1,526,632-2,202,831) annual cardiovascular deaths were associated with nonoptimal temperatures, constituting 8.86% (95% empirical CI: 7.51%-12.32%) of total cardiovascular mortality corresponding to 26 deaths per 100,000 population. Cold-related deaths accounted for 8.20% (95% empirical CI: 6.74%-11.57%), whereas heat-related deaths accounted for 0.66% (95% empirical CI: 0.49%-0.98%). The mortality burden varied significantly across regions, with the highest excess mortality rates observed in Central Asia and Eastern Europe. From 2000 to 2019, cold-related excess death ratios decreased, while heat-related ratios increased, resulting in an overall decline in temperature-related deaths. Southeastern Asia, Sub-Saharan Africa, and Oceania observed the greatest reduction, while Southern Asia experienced an increase. The Americas and several regions in Asia and Europe displayed fluctuating temporal patterns. CONCLUSIONS: Nonoptimal temperatures substantially contribute to cardiovascular mortality, with heterogeneous spatiotemporal patterns. Effective mitigation and adaptation strategies are crucial, especially given the increasing heat-related cardiovascular deaths amid climate change.


Assuntos
Doenças Cardiovasculares , Saúde Global , Humanos , Doenças Cardiovasculares/mortalidade , Temperatura Baixa/efeitos adversos
10.
Int J Epidemiol ; 53(3)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38725299

RESUMO

BACKGROUND: Model-estimated air pollution exposure products have been widely used in epidemiological studies to assess the health risks of particulate matter with diameters of ≤2.5 µm (PM2.5). However, few studies have assessed the disparities in health effects between model-estimated and station-observed PM2.5 exposures. METHODS: We collected daily all-cause, respiratory and cardiovascular mortality data in 347 cities across 15 countries and regions worldwide based on the Multi-City Multi-Country collaborative research network. The station-observed PM2.5 data were obtained from official monitoring stations. The model-estimated global PM2.5 product was developed using a machine-learning approach. The associations between daily exposure to PM2.5 and mortality were evaluated using a two-stage analytical approach. RESULTS: We included 15.8 million all-cause, 1.5 million respiratory and 4.5 million cardiovascular deaths from 2000 to 2018. Short-term exposure to PM2.5 was associated with a relative risk increase (RRI) of mortality from both station-observed and model-estimated exposures. Every 10-µg/m3 increase in the 2-day moving average PM2.5 was associated with overall RRIs of 0.67% (95% CI: 0.49 to 0.85), 0.68% (95% CI: -0.03 to 1.39) and 0.45% (95% CI: 0.08 to 0.82) for all-cause, respiratory, and cardiovascular mortality based on station-observed PM2.5 and RRIs of 0.87% (95% CI: 0.68 to 1.06), 0.81% (95% CI: 0.08 to 1.55) and 0.71% (95% CI: 0.32 to 1.09) based on model-estimated exposure, respectively. CONCLUSIONS: Mortality risks associated with daily PM2.5 exposure were consistent for both station-observed and model-estimated exposures, suggesting the reliability and potential applicability of the global PM2.5 product in epidemiological studies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Cidades , Exposição Ambiental , Material Particulado , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Doenças Cardiovasculares/mortalidade , Cidades/epidemiologia , Exposição Ambiental/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Doenças Respiratórias/mortalidade , Masculino , Mortalidade/tendências , Feminino , Pessoa de Meia-Idade , Idoso , Monitoramento Ambiental/métodos , Adulto , Aprendizado de Máquina
11.
J Hazard Mater ; 473: 134606, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788590

RESUMO

Although some studies have found that short-term PM2.5 exposure is associated with lung cancer deaths, its impact on other cancer sites is unclear. To answer this research question, this time-stratified case-crossover study used individual cancer death data between January 1, 2000, and December 31, 2019, extracted from the Brazilian mortality information system to quantify the associations between short-term PM2.5 exposure and cancer mortality from 25 common cancer sites. Daily PM2.5 concentration was aggregated at the municipality level as the key exposure. The study included a total of 34,516,120 individual death records, with the national daily mean PM2.5 exposure 15.3 (SD 4.3) µg/m3. For every 10-µg/m3 increase in three-day average PM2.5 exposure, the odds ratio (OR) for all-cancer mortality was 1.04 (95% CI 1.03-1.04). Apart from all-cancer deaths, PM2.5 exposure may impact cancers of oesophagus (1.04, 1.00-1.08), stomach (1.05, 1.02-1.08), colon-rectum (1.04, 1.01-1.06), lung (1.04, 1.02-1.06), breast (1.03, 1.00-1.06), prostate (1.07, 1.04-1.10), and leukaemia (1.05, 1.01-1.09). During the study period, acute PM2.5 exposure contributed to an estimated 1,917,994 cancer deaths, ranging from 0 to 6,054 cases in each municipality. Though there has been a consistent downward trend in PM2.5-related all-cancer mortality risks from 2000 to 2019, the impact remains significant, indicating the continued importance of cancer patients avoiding PM2.5 exposure. This nationwide study revealed a notable association between acute PM2.5 exposure and heightened overall and site-specific cancer mortality for the first time to our best knowledge. The findings suggest the importance of considering strategies to minimize such exposure in cancer care guidelines. ENVIRONMENTAL IMPLICATION: The 20-year analysis of nationwide death records in Brazil revealed that heightened short-term exposure to PM2.5 is associated with increased cancer mortality at various sites, although this association has gradually decreased over time. Despite the declining impact, the research highlights the persistent adverse effects of PM2.5 on cancer mortality, emphasizing the importance of continued research and preventive measures to address the ongoing public health challenges posed by air pollution.


Assuntos
Poluentes Atmosféricos , Exposição Ambiental , Neoplasias , Material Particulado , Humanos , Material Particulado/toxicidade , Material Particulado/análise , Brasil/epidemiologia , Neoplasias/mortalidade , Exposição Ambiental/efeitos adversos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Masculino , Feminino , Estudos Cross-Over , Pessoa de Meia-Idade , Idoso , Adulto
12.
BMC Public Health ; 24(1): 1289, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734652

RESUMO

BACKGROUND: Under a changing climate, the joint effects of temperature and relative humidity on tuberculosis (TB) are poorly understood. To address this research gap, we conducted a time-series study to explore the joint effects of temperature and relative humidity on TB incidence in China, considering potential modifiers. METHODS: Weekly data on TB cases and meteorological factors in 22 cities across mainland China between 2011 and 2020 were collected. The proxy indicator for the combined exposure levels of temperature and relative humidity, Humidex, was calculated. First, a quasi-Poisson regression with the distributed lag non-linear model (DLNM) was constructed to examine the city-specific associations between humidex and TB incidence. Second, a multivariate meta-regression model was used to pool the city-specific effect estimates, and to explore the potential effect modifiers. RESULTS: A total of 849,676 TB cases occurred in the 22 cities between 2011 and 2020. Overall, a conspicuous J-shaped relationship between humidex and TB incidence was discerned. Specifically, a decrease in humidex was positively correlated with an increased risk of TB incidence, with a maximum relative risk (RR) of 1.40 (95% CI: 1.11-1.76). The elevated RR of TB incidence associated with low humidex (5th humidex) appeared on week 3 and could persist until week 13, with a peak at approximately week 5 (RR: 1.03, 95% CI: 1.01-1.05). The effects of low humidex on TB incidence vary by Natural Growth Rate (NGR) levels. CONCLUSION: A J-shaped exposure-response association existed between humidex and TB incidence in China. Humidex may act as a better predictor to forecast TB incidence compared to temperature and relative humidity alone, especially in regions with higher NGRs.


Assuntos
Umidade , Tuberculose , China/epidemiologia , Humanos , Tuberculose/epidemiologia , Incidência , Temperatura , Cidades/epidemiologia , Mudança Climática
13.
Environ Pollut ; 347: 123810, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493867

RESUMO

Brazil has experienced unprecedented wildfires recently. We aimed to investigate the association of wildfire-related fine particulate matter (PM2.5) with cause-specific cardiovascular mortality, and to estimate the attributable mortality burden. Exposure to wildfire-related PM2.5 was defined as exposure to annual mean wildfire-related PM2.5 concentrations in the 1-year prior to death. The variant difference-in-differences method was employed to explore the wildfire-related PM2.5-cardiovascular mortality association. We found that, in Brazil, compared with the population in the first quartile (Q1: ≤1.82 µg/m3) of wildfire-related PM2.5 exposure, those in the fourth quartile (Q4: 4.22-17.12 µg/m3) of wildfire-related PM2.5 exposure had a 2.2% (RR: 1.022, 95% CI: 1.013-1.032) higher risk for total cardiovascular mortality, 3.1% (RR: 1.031, 95% CI: 1.014-1.048) for ischaemic heart disease mortality, and 2.0% (RR: 1.020, 95% CI: 1.002-1.038) for stroke mortality. From 2010 to 2018, an estimation of 35,847 (95% CI: 22,424-49,177) cardiovascular deaths, representing 17.77 (95% CI: 11.12-24.38) per 100,000 population, were attributable to wildfire-related PM2.5 exposure. Targeted health promotion strategies should be developed for local governments to protect the public from the risk of wildfire-related cardiovascular premature deaths.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Incêndios Florestais , Humanos , Brasil/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Material Particulado/análise , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/epidemiologia , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise
14.
JAMA Pediatr ; 178(4): 376-383, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38407915

RESUMO

Importance: Preterm birth (PTB) is associated with adverse health outcomes. The outcomes of heat exposure during pregnancy and the moderating association of greenness with PTB remain understudied. Objective: To investigate associations between heat exposure, greenness, and PTB, as well as interactions between these factors. Design, Setting, and Participants: Included in this cohort study were births occurring in Sydney, New South Wales, Australia, between 2000 and 2020, retrieved from New South Wales Midwives Data Collection. Participants with incomplete or missing data on their residential address or those who resided outside of New South Wales during their pregnancy were excluded. Data were analyzed from March to October 2023. Exposures: Greenness measured using normalized difference vegetation index (NDVI) and tree cover derived from satellite images. Daily extreme heat and nighttime extreme heat were defined as above the 95th percentile of community- and trimester-specific daily mean temperatures and nighttime temperatures. Main Outcomes and Measures: Logistic regression models estimated the independent association of extreme heat with PTB, adjusting for individual- and area-level covariates, season of conception, and long-term trend. An interaction term between extreme heat exposure and greenness was included to explore potential modification. With a significant interaction observed, the number of preventable heat-associated PTBs that were associated with greenness was estimated. Results: A total of 1 225 722 births (median [IQR] age, 39 [38-40] weeks; 631 005 male [51.5%]) were included in the analysis, including 63 144 PTBs (median [IQR] age, 35 [34-36] weeks; 34 822 male [55.1%]). Compared with those without heat exposure, exposure to daily extreme heat and nighttime extreme heat in the third trimester was associated with increased risks of PTB, with an adjusted odds ratio (OR) of 1.61 (95% CI, 1.55-1.67) and 1.51 (95% CI, 1.46-1.56]), respectively (PTB rates: exposed, 4615 of 61 338 [7.5%] vs unexposed, 56 440 of 1 162 295 [4.9%] for daily extreme heat and 4332 of 61 337 [7.1%] vs 56 723 of 1 162 296 [4.9%] for nighttime extreme heat). Disparities in associations between extreme heat exposure and PTB were observed, with lower odds of PTB among pregnant individuals residing in greener areas. The associations between extreme heat exposure and PTB could be mitigated significantly by higher greenness. Improving NDVI and tree cover could reduce daily extreme heat-associated PTB by 13.7% (95% CI, 2.3%-15.1%) and 20.9% (95% CI, 5.8%-31.5%), respectively. For nighttime extreme heat-associated PTB, reductions were 13.0% (0.2%-15.4%) and 17.2% (4.1%-27.0%), respectively. Conclusions and Relevance: Results of this large birth cohort study suggest that extreme heat exposure was adversely associated with PTB, with greenness playing a moderating role. Increasing greenness levels in residential communities could prevent heat-associated PTBs. These findings emphasize the importance of integrating heat mitigation strategies and improving green space in urban planning and public health interventions.


Assuntos
Calor Extremo , Nascimento Prematuro , Gravidez , Feminino , Recém-Nascido , Humanos , Adulto , Nascimento Prematuro/epidemiologia , Nascimento Prematuro/etiologia , Calor Extremo/efeitos adversos , Temperatura Alta , Estudos de Coortes , Austrália/epidemiologia
15.
Sci Total Environ ; 918: 170685, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38316298

RESUMO

Cardiovascular diseases (CVDs) become a major public health concern. Evidence concerning the effects of outdoor artificial light at night (ALAN) on CVD in adults is scarce. We aimed to investigate the extent to which outdoor ALAN could affect the risk of CVD over a exposure range. Data from the China Health and Retirement Longitudinal Study, a population-based longitudinal study, launched in 2011-2012 and follow up till 2018, covering 28 provinces, autonomous regions and municipalities across mainland China. This study included 14,097 adults aged ≥45 years. Outdoor ALAN exposure (in nanowatts per centimeters squared per steradian) within 500 m of each participant's baseline residence was obtained from satellite image data. CVD was defined from medical diagnosis. The population was divided into three groups based on outdoor ALAN exposure from low to high. Cox regression model was used to estimate the association between outdoor ALAN exposure and incident CVD with hazard ratios (HRs) and 95 % confidence intervals (CIs). The mean (SD) age of the cohort was 57.6 (9.1) years old and 49.3 % were males. Outdoor ALAN exposure of study participants ranged from 0.02 to 39.79 nW/cm2/sr. During 83,033 person-years of follow-up, 2190 (15.5 %) cases of CVD were identified. Both low (HR: 1.21; 95 % CI: 1.02-1.43) and high (HR: 1.23; 95 % CI: 1.04-1.46) levels of outdoor ALAN exposure group were associated with higher risk of CVD compared with intermediate levels of outdoor ALAN exposure group. Body mass index was a significant effect modifier in the association between outdoor ALAN and risk of CVD, with stronger effects among those who was overweight or obese. The findings of this study suggest that low and high outdoor ALAN exposure were associated with a higher risk for CVD. More attention should be given to the cardiovascular effects associated with outdoor ALAN exposure.


Assuntos
Doenças Cardiovasculares , Adulto , Masculino , Humanos , Criança , Feminino , Estudos de Coortes , Doenças Cardiovasculares/epidemiologia , Estudos Longitudinais , Poluição Luminosa , Fatores de Risco , China/epidemiologia
16.
Respir Res ; 25(1): 105, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419020

RESUMO

BACKGROUND: Increasing evidence is appearing that ozone has adverse effects on health. However, the association between long-term ozone exposure and lung function is still inconclusive. OBJECTIVES: To investigate the associations between long-term exposure to ozone and lung function in Chinese young adults. METHODS: We conducted a prospective cohort study among 1594 college students with a mean age of 19.2 years at baseline in Shandong, China from September 2020 to September 2021. Lung function indicators were measured in September 2020 and September 2021, including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), forced expiratory flow at the 25th, 50th, and 75th percentile of the FVC (FEF25, FEF50, and FEF75) and mean flow rate between 25% and 75% of the FVC (FEF25-75) were measured. Daily 10 km×10 km ozone concentrations come from a well-validated data-fusion approach. The time-weighted average concentrations in 12 months before the lung function test were defined as the long-term ozone exposure. The associations between long-term ozone exposure and lung function indicators in Chinese young adults were investigated using a linear mixed effects model, followed by stratified analyses regarding sex, BMI and history of respiratory diseases. RESULTS: Each interquartile range (IQR) (8.9 µg/m3) increase in long-term ozone exposure were associated with a -204.3 (95% confidence interval (CI): -361.6, -47.0) ml/s, -146.3 (95% CI: -264.1, -28.4) ml/s, and - 132.8 (95% CI: -239.2, -26.4) ml/s change in FEF25, FEF50, and FEF25-75, respectively. Stronger adverse associations were found in female participants or those with BMI ≥ 24 kg/m2 and history of respiratory diseases. CONCLUSION: Long-term exposure to ambient ozone is associated with impaired small airway indicators in Chinese young adults. Females, participants with BMI ≥ 24 kg/m2 and a history of respiratory disease have stronger associations.


Assuntos
Poluentes Atmosféricos , Ozônio , Doenças Respiratórias , Humanos , Feminino , Adulto Jovem , Adulto , Pulmão , Estudos Longitudinais , Estudos Prospectivos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Ozônio/toxicidade , Estudos de Coortes , Volume Expiratório Forçado , Doenças Respiratórias/induzido quimicamente , Doenças Respiratórias/diagnóstico , Doenças Respiratórias/epidemiologia , Poluentes Atmosféricos/análise
17.
Lancet Planet Health ; 8(2): e108-e116, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38331527

RESUMO

BACKGROUND: Exposure to cold spells is associated with mortality. However, little is known about the global mortality burden of cold spells. METHODS: A three-stage meta-analytical method was used to estimate the global mortality burden associated with cold spells by means of a time series dataset of 1960 locations across 59 countries (or regions). First, we fitted the location-specific, cold spell-related mortality associations using a quasi-Poisson regression with a distributed lag non-linear model with a lag period of up to 21 days. Second, we built a multivariate meta-regression model between location-specific associations and seven predictors. Finally, we predicted the global grid-specific cold spell-related mortality associations during 2000-19 using the fitted meta-regression model and the yearly grid-specific meta-predictors. We calculated the annual excess deaths, excess death ratio (excess deaths per 1000 deaths), and excess death rate (excess deaths per 100 000 population) due to cold spells for each grid across the world. FINDINGS: Globally, 205 932 (95% empirical CI [eCI] 162 692-250 337) excess deaths, representing 3·81 (95% eCI 2·93-4·71) excess deaths per 1000 deaths (excess death ratio), and 3·03 (2·33-3·75) excess deaths per 100 000 population (excess death rate) were associated with cold spells per year between 2000 and 2019. The annual average global excess death ratio in 2016-19 increased by 0·12 percentage points and the excess death rate in 2016-19 increased by 0·18 percentage points, compared with those in 2000-03. The mortality burden varied geographically. The excess death ratio and rate were highest in Europe, whereas these indicators were lowest in Africa. Temperate climates had higher excess death ratio and rate associated with cold spells than other climate zones. INTERPRETATION: Cold spells are associated with substantial mortality burden around the world with geographically varying patterns. Although the number of cold spells has on average been decreasing since year 2000, the public health threat of cold spells remains substantial. The findings indicate an urgency of taking local and regional measures to protect the public from the mortality burdens of cold spells. FUNDING: Australian Research Council, Australian National Health and Medical Research Council, EU's Horizon 2020 Project Exhaustion.


Assuntos
Clima , Saúde Pública , Austrália , Europa (Continente) , Proteínas Adaptadoras de Transdução de Sinal
18.
Epidemiology ; 35(3): 408-417, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38261409

RESUMO

BACKGROUND: Although the indoor environment has been proposed to be associated with childhood sleep health, to our knowledge no study has investigated the association between home renovation and childhood sleep problems. METHODS: The study included 186,470 children aged 6-18 years from the National Chinese Children Health Study (2012-2018). We measured childhood sleeping problems via the Chinese version of the Sleep Disturbance Scale for Children (C-SDSC). Information on home renovation exposure within the recent 2 years was collected via parent report. We estimated associations between home renovation and various sleeping problems, defined using both continuous and categorized (binary) C-SDSC t-scores, using generalized mixed models. We fitted models with city as a random effect variable, and other covariates as fixed effects. RESULTS: Out of the overall participants, 89,732 (48%) were exposed to recent home renovations. Compared to the unexposed group, children exposed to home renovations had higher odds of total sleep disorder (odd ratios [OR] = 1.3; 95% confidence interval [CI] = 1.2, 1.4). Associations varied when we considered different types of home renovation materials. Children exposed to multiple types of home renovation had higher odds of sleeping problems. We observed similar findings when considering continuous C-SDSC t-scores. Additionally, sex and age of children modified the associations of home renovation exposure with some of the sleeping problem subtypes. CONCLUSIONS: We found that home renovation was associated with higher odds of having sleeping problems and that they varied when considering the type of renovation, cumulative exposure, sex, and age differences.


Assuntos
Convulsões , Transtornos do Sono-Vigília , Criança , Humanos , Inquéritos e Questionários , Cidades , China/epidemiologia , Transtornos do Sono-Vigília/epidemiologia
19.
Environ Int ; 184: 108423, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38241831

RESUMO

BACKGROUND: Greenspace is known to have a positive impact on human health and well-being, but its potential effects on visual acuity have not been extensively studied. OBJECTIVES: Our aim was to examine the relationship between long-term greenspace exposure and visual acuity in children, while also exploring the potential mechanisms in this association. METHODS: We conducted this prospective cohort study based on the Children's growth environment, lifestyle, physical, and mental health development project (COHERENCE), which screened 286,801 schoolchildren in Guangzhou, China, starting in the 2016/17 academic year and followed them up for three academic years (2017/18-2019/20). Visual acuity was measured using a standardized logarithmic chart, and visual impairment was defined as visual acuity worse than 0.0 logarithm of the minimum angle of resolution (LogMAR) units in the better eye. We used the Normalized Difference Vegetation Index (NDVI), the Soil-Adjusted Vegetation Index (SAVI), and the Enhanced Vegetation Index (EVI) to assess the greenspace surrounding child's geocoded home and school at each visit. RESULTS: Our analysis indicated that higher greenspace exposure was associated with greater visual acuity z-score at baseline and with slower decline in visual acuity z-score during the 3-year follow-up. An interquartile range increase in home-school-based NDVI 300m was associated with a 7% decrease [hazard ratios (HRs): 0.93, 95% confidence interval (CI): 0.92, 0.94] in the risk of visual impairment. We also found that air pollution, physical activity, outdoor time, and recreational screen time partially mediated the greenspace-visual acuity association. CONCLUSION: Our findings suggest that increasing greenspace exposure could benefit children's visual acuity development and reduce the risk of visual impairment by reducing air pollution and recreational screen time while increasing physical activity and outdoor time. All results could have potential policy implications, given the individual and societal burdens associated with visual impairment.


Assuntos
Poluição do Ar , Parques Recreativos , Criança , Humanos , Estudos Prospectivos , China/epidemiologia , Transtornos da Visão/epidemiologia , Transtornos da Visão/etiologia
20.
PLoS Med ; 21(1): e1004341, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38252630

RESUMO

BACKGROUND: More intense tropical cyclones (TCs) are expected in the future under a warming climate scenario, but little is known about their mortality effect pattern across countries and over decades. We aim to evaluate the TC-specific mortality risks, periods of concern (POC) and characterize the spatiotemporal pattern and exposure-response (ER) relationships on a multicountry scale. METHODS AND FINDINGS: Daily all-cause, cardiovascular, and respiratory mortality among the general population were collected from 494 locations in 18 countries or territories during 1980 to 2019. Daily TC exposures were defined when the maximum sustained windspeed associated with a TC was ≥34 knots using a parametric wind field model at a 0.5° × 0.5° resolution. We first estimated the TC-specific mortality risks and POC using an advanced flexible statistical framework of mixed Poisson model, accounting for the population changes, natural variation, seasonal and day of the week effects. Then, a mixed meta-regression model was used to pool the TC-specific mortality risks to estimate the overall and country-specific ER relationships of TC characteristics (windspeed, rainfall, and year) with mortality. Overall, 47.7 million all-cause, 15.5 million cardiovascular, and 4.9 million respiratory deaths and 382 TCs were included in our analyses. An overall average POC of around 20 days was observed for TC-related all-cause and cardiopulmonary mortality, with relatively longer POC for the United States of America, Brazil, and Taiwan (>30 days). The TC-specific relative risks (RR) varied substantially, ranging from 1.04 to 1.42, 1.07 to 1.77, and 1.12 to 1.92 among the top 100 TCs with highest RRs for all-cause, cardiovascular, and respiratory mortality, respectively. At country level, relatively higher TC-related mortality risks were observed in Guatemala, Brazil, and New Zealand for all-cause, cardiovascular, and respiratory mortality, respectively. We found an overall monotonically increasing and approximately linear ER curve of TC-related maximum sustained windspeed and cumulative rainfall with mortality, with heterogeneous patterns across countries and regions. The TC-related mortality risks were generally decreasing from 1980 to 2019, especially for the Philippines, Taiwan, and the USA, whereas potentially increasing trends in TC-related all-cause and cardiovascular mortality risks were observed for Japan. CONCLUSIONS: The TC mortality risks and POC varied greatly across TC events, locations, and countries. To minimize the TC-related health burdens, targeted strategies are particularly needed for different countries and regions, integrating epidemiological evidence on region-specific POC and ER curves that consider across-TC variability.


Assuntos
Tempestades Ciclônicas , Doenças Respiratórias , Humanos , Estados Unidos , Clima , Brasil , Japão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA