Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2309725, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647360

RESUMO

The interplay between bacteria and their host influences the homeostasis of the human immune microenvironment, and this reciprocal interaction also affects the process of tissue damage repair. A variety of immunomodulatory commensal bacteria reside in the body, capable of delivering membrane vesicles (MVs) to host cells to regulate the local immune microenvironment. This research revealed, for the initial time, the significant enhancement of mucosal and cutaneous wound healing by MVs secreted by the human commensal Lactobacillus reuteri (RMVs) through modulation of the inflammatory environment in wound tissue. Local administration of RMVs reduces the proportion of pro-inflammatory macrophages in inflamed tissues and mitigates the level of local inflammation, thereby facilitating the healing of oral mucosa and cutaneous wounds. The elevated oxidative stress levels in activated pro-inflammatory macrophages can be modulated by RMVs, resulting in phenotypic transformation of macrophages. Furthermore, 3-hydroxypropionaldehyde present in RMVs can decrease the mitochondrial permeability of macrophages and stabilize the mitochondrial membrane potential, thereby promoting the conversion of macrophages to an anti-inflammatory phenotype. This study pioneers the significance of commensal bacterial MVs in tissue injury repair and presents a novel concept for the repair of tissue damage.

2.
Phytomedicine ; 129: 155579, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38574427

RESUMO

BACKGROUND AND AIMS: Chronic coronary syndrome (CCS) has always been controversial in its therapeutic strategy. Although invasive treatment and optimal medication therapy (OMT) are the most commonly used treatments, doctors continue to debate the best strategy. However, traditional Chinese medicine (TCM) for CCS is effective clinically. METHODS: To identify potentially eligible observational and experimental studies, we searched Pubmed, the Web of Science, and the China National Knowledge Internet. To be eligible, studies had to report with end-of treatment outcomes, such as major adverse cardiac events (MACE), deaths from myocardial infarctions (MI), all-cause mortality, angina, cardiac mortality, the effectiveness rate of electrocardiographs, and the reduction rate of the Nitroglycerin tablets. Risk differences (RDs) and 95 % confidence intervals (95 % CIs) were calculated based on random-effects models or fixed-effects models. Citation screening, data abstraction, risk assessment, and strength-of-evidence grading were completed by 2 independent reviewers. RESULTS: In Section 1 (13 studies, involving 17,287 patients), showed no significant difference between invasive treatment and medication treatment in MACE (RD = -0.04, 95% CI = -0.08 to 0.00, I2 = 76.4 %), all-cause mortality (RD = -0.01, 95%CI = -0.022 to 0.01, I2 = 73.44 %), MI (RD = 0.00, 95%CI = -0.00 to 0.01, I2 = 0.00 %) and cardiac mortality (RD = 0.00, 95 %CI = -0.01 to 0.01, I2 = 34.9 %). In Section 2 (21 studies, including 1820 patients), compared with WM treatment, TCM + WM treatment increased ECG effectiveness by 18 %, angina effectiveness by 20 %, and stopping or reducing Nitroglycerin tablets by 20 %. In Section 3 (25 studies, including 2859 patients) showed that TCM revealed a better electrocardiogram effective rate (RD = 0.10, 95 %CI = 0.05 to 0.14, I2 = 44.7 %) and angina effective rate (RD = 0.12, 95 %CI = 0.09 to 0.15, I2 = 44.9 %). We identified that TCM treatment properties of "Circulating blood and transforming stasis" and application of warm/heat-properties medicines were frequently used in CCS treatment. CONCLUSIONS: TCM treatment has shown superior beneficial cardioprotective in CCS therapy strategy, among which "Circulating blood and transforming stasis" and the application of warm/heat-properties medicine are its characteristics.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Humanos , Doença Crônica/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa/métodos , Infarto do Miocárdio/tratamento farmacológico
3.
BMC Cancer ; 24(1): 11, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166700

RESUMO

OBJECTIVE: The aim of this study was to investigate the clinical, imaging and pathological features of extraskeletal osteosarcoma (EOS) and to improve the understanding of this disease and other similar lesions. METHODS: The data for 11 patients with pathologically confirmed extraosseous osteosarcoma, including tumour site and size and imaging and clinical manifestations, were analysed retrospectively. RESULTS: Six patients were male (60%), and 5 were female (40%); patient age ranged from 23 to 76 years (average age 47.1 years). Among the 11 patients, 7 had clear calcifications or ossification with different morphologies, and 2 patients showed a massive mature bone tumour. MRI showed a mixed-signal mass with slightly longer T1 and T2 signals in the tumour parenchyma. Enhanced CT and MRI scans showed enhancement in the parenchyma. Ten patients had different degrees of necrosis and cystic degeneration in the mass, 2 of whom were complicated with haemorrhage, and MRI showed "fluid‒fluid level" signs. Of the 11 patients, five patients survived after surgery, and no obvious recurrence or metastasis was found on imaging examination. One patient died of lung metastasis after surgery, and 2 patients with open biopsy died of disease progression. One patient died of respiratory failure 2 months after operation. 2 patients had positive surgical margins, and 1 had lung metastasis 6 months after operation and died 19 months after operation. Another patient had recurrence 2 months after surgery. CONCLUSION: The diagnosis of EOS requires a combination of clinical, imaging and histological examinations. Cystic degeneration and necrosis; mineralization is common, especially thick and lumpy mineralization. Extended resection is still the first choice for localized lesions. For patients with positive surgical margins or metastases, adjuvant chemoradiotherapy is needed.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Osteossarcoma , Neoplasias de Tecidos Moles , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto Jovem , Adulto , Idoso , Diagnóstico Diferencial , Margens de Excisão , Estudos Retrospectivos , Neoplasias de Tecidos Moles/patologia , Imageamento por Ressonância Magnética , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Ósseas/patologia , Necrose/diagnóstico
4.
IEEE Open J Eng Med Biol ; 4: 226-233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38059069

RESUMO

Goal: The purpose of this work is to improve malaria diagnosis efficiency by integrating smartphones with microscopes. This integration involves image acquisition and algorithmic detection of malaria parasites in various thick blood smear (TBS) datasets sourced from different global regions, including low-quality images from Sub-Saharan Africa. Methods: This approach combines image segmentation and a convolutional neural network (CNN) to distinguish between white blood cells, artifacts, and malaria parasites. A portable system integrates a microscope with a graphical user interface to facilitate rapid malaria detection from smartphone images. We trained the CNN model using open-source data from the Chittagong Medical College Hospital, Bangladesh. Results: The validation process, using microscopic TBS from both the training dataset and an additional dataset from Sub-Saharan Africa, demonstrated that the proposed model achieved an accuracy of 97.74% ± 0.05% and an F1-score of 97.75% ± 0.04%. Remarkably, our proposed model with AlexNet surpasses the reported literature performance of 96.32%. Conclusions: This algorithm shows promise in aiding malaria-stricken regions, especially those with limited resources.

5.
Sensors (Basel) ; 23(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37571486

RESUMO

This paper presents a novel routing planning method based on multi-objective optimization to tackle the routing problem in computing power networks. The proposed method aims to improve the performance and efficiency of routing by considering multiple objectives. In this study, we first model the computing power network and formulate the routing problem as a multi-objective optimization problem. To address this problem, we introduce a non-dominated sorting genetic algorithm incorporating a ratio parameter adjustment strategy based on reinforcement learning. Extensive simulations are conducted to evaluate the performance of the proposed routing algorithm. The results demonstrate significant client latency and cost reductions, highlighting the algorithm's effectiveness. By providing a comprehensive solution to the routing problem in computing power networks, this work contributes to the field by offering improved performance and efficiency. The proposed method's ability to optimize multiple objectives sets it apart from existing approaches, making it a valuable contribution to the research community.

6.
Sensors (Basel) ; 23(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447890

RESUMO

Mobile edge computing has been an important computing paradigm for providing delay-sensitive and computation-intensive services to mobile users. In this paper, we study the problem of the joint optimization of task assignment and energy management in a mobile-server-assisted edge computing network, where mobile servers can provide assisted task offloading services on behalf of the fixed servers at the network edge. The design objective is to minimize the system delay. As far as we know, our paper presents the first work that improves the quality of service of the whole system from a long-term aspect by prolonging the operational time of assisted mobile servers. We formulate the system delay minimization problem as a mixed-integer programming (MIP) problem. Due to the NP-hardness of this problem, we propose a dynamic energy criticality avoidance-based delay minimization ant colony algorithm (EACO), which strives for a balance between delay minimization for offloaded tasks and operational time maximization for mobile servers. We present a detailed algorithm design and deduce its computational complexity. We conduct extensive simulations, and the results demonstrate the high performance of the proposed algorithm compared to the benchmark algorithms.


Assuntos
Algoritmos , Benchmarking , Computadores , Dureza , Fenômenos Físicos
7.
Front Cell Infect Microbiol ; 13: 1131218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968100

RESUMO

Stem cells play a crucial role in re-establishing homeostasis in the body, and the search for mechanisms by which they interact with the host to exert their therapeutic effects remains a key question currently being addressed. Considering their significant regenerative/therapeutic potential, research on mesenchymal stem cells (MSCs) has experienced an unprecedented advance in recent years, becoming the focus of extensive works worldwide to develop cell-based approaches for a variety of diseases. Initial evidence for the effectiveness of MSCs therapy comes from the restoration of dynamic microenvironmental homeostasis and endogenous stem cell function in recipient tissues by systemically delivered MSCs. The specific mechanisms by which the effects are exerted remain to be investigated in depth. Importantly, the profound cell-host interplay leaves persistent therapeutic benefits that remain detectable long after the disappearance of transplanted MSCs. In this review, we summarize recent advances on the role of MSCs in multiple disease models, provide insights into the mechanisms by which MSCs interact with endogenous stem cells to exert therapeutic effects, and refine the interconnections between MSCs and cells fused to damaged sites or differentiated into functional cells early in therapy.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Diferenciação Celular/fisiologia
8.
Front Cell Infect Microbiol ; 13: 1143235, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936765

RESUMO

Introduction: Cleidocranial dysplasia (CCD) is an autosomal-dominant, heritable skeletal and dental disease, involving hypoplastic clavicles, defective ossification of the anterior fontanelle, dentin and enamel hypoplasia, and supernumerary teeth, which can seriously affect the oral and mental health of patients. Amyloid-like protein aggregation, which is established by lysozyme conjugated with polyethylene glycol (Lyso-PEG), forms a mineralized nanofilm layer on a healthy enamel surface. However, whether it can form a remineralization layer in dental tissues from CCD remains unclear. Methods: This study evaluated deciduous teeth from healthy individuals and a patient with CCD. Because pulp and dentin are functionally closely related, stem cells from human exfoliated deciduous teeth (SHED) from CCD patients and healthy individuals were collected to compare their biological properties. Results: The results found that deciduous teeth from patients with CCD exhibited dentin hypoplasia. In addition, the proliferative ability and osteogenic potential of SHED from patients with CCD were lower than those of control individuals. Finally, Lyso-PEG was applied to dentin from the CCD and control groups, showing a similar remineralization-induced effect on the dentin surfaces of the two groups. Conclusion: These results extend our understanding of the dentin and SHED of patients with CCD, exhibiting good caries-preventive capacity and good biocompatibility of Lyso-PEG, thus providing a novel dental therapy for CCD and patients with tooth hypoplasia.


Assuntos
Displasia Cleidocraniana , Dente Supranumerário , Humanos
9.
Acta Vet Scand ; 65(1): 4, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737784

RESUMO

BACKGROUND: The emergence of multidrug resistance among enterococci makes effective treatment of enterococcal infections more challenging. Giant pandas (Ailuropoda melanoleuca) are vulnerable to oral trauma and lesions as they feast on bamboo. Enterococci may contaminate such oral lesions and cause infection necessitating treatment with antibiotics. However, few studies have focused on the virulence and drug resistance of oral-derived enterococci, including Enterococcus faecium, in giant pandas. In this study, we analyzed the prevalence of 8 virulence genes and 14 drug resistance genes in E. faecium isolates isolated from saliva samples of giant pandas held in captivity in China and examined the antimicrobial drug susceptibility patterns of the E. faecium isolates. RESULTS: Twenty-eight isolates of E. faecium were successfully isolated from the saliva samples. Four virulence genes were detected, with the acm gene showing the highest prevalence (89%). The cylA, cpd, esp, and hyl genes were not detected. The isolated E. faecium isolates possessed strong resistance to a variety of drugs; however, they were sensitive to high concentrations of aminoglycosides. The resistance rates to vancomycin, linezolid, and nitrofurantoin were higher than those previously revealed by similar studies in China and other countries. CONCLUSIONS: The findings of the present study indicate the drugs of choice for treatment of oral E. faecium infection in the giant panda.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Ursidae , Animais , Enterococcus faecium/genética , Virulência/genética , Antibacterianos/farmacologia , Fatores de Virulência/genética , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana/veterinária , Enterococcus , Infecções por Bactérias Gram-Positivas/veterinária
10.
STAR Protoc ; 3(4): 101674, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36107746

RESUMO

Glioma-associated oncogene homolog 1 (Gli1) marks a subpopulation of endogenous mesenchymal stem cells (MSCs) characterized by perivascular location. Here, we present an optimized immunofluorescence staining protocol to identify resident Gli1+ MSCs in fixed/frozen bone sections from LacZ transgenic mice. This protocol describes the preparation of fixed/frozen tissue sections and the use of LacZ immunofluorescent staining for the in vivo characterization of endogenous MSCs, regarding their specific identity and specialized niches, and is applicable to LacZ-expressing cells of diverse organs. For complete details on the use and execution of this protocol, please refer to Chen et al. (2020).


Assuntos
Células-Tronco Mesenquimais , Camundongos , Animais , Camundongos Transgênicos , Óperon Lac , Proteína GLI1 em Dedos de Zinco , Coloração e Rotulagem , Imunofluorescência
11.
Adv Healthc Mater ; 11(19): e2200872, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35869581

RESUMO

The pits and fissures of teeth have high caries susceptibility, and sealing these areas is considered as an effective method to prevent caries. However, long-term caries prophylaxis cannot be maintained because of the negative effects derived from the technical sensitivity and disadvantages of sealing materials. Herein, a new strategy is proposed to occlude fossae by amyloid-mediated biomimetic remineralization. In contrast to conventional inward blocking from the outside of fossae, amyloid-mediated biomimetic mineralization delivers an amyloid-like protein nanofilm into the deepest zone of the fossae and induces the formation of remineralized enamel inside. Such assembly from lysozyme conjugated with poly (ethylene glycol) enriches the interface with strongly bonded ionsand directs in situ nucleation to achieve enamel epitaxial growth. Not only is the structure of the enamel-like crystalline hydroxyapatite layer but also its mechanical stability is similar to that of natural enamel. Furthermore, the layer shows good biocompatibility and antibacterial properties. On the basis of the findings, it is demonstrated that amyloid-like protein aggregation may provide an enamel remineralization strategy to modify the current clinically available methods of pit and fissure sealing and shows great promise in preventing caries.


Assuntos
Muramidase , Selantes de Fossas e Fissuras , Antibacterianos , Suscetibilidade à Cárie Dentária , Durapatita , Etilenoglicóis , Agregados Proteicos
12.
Adv Sci (Weinh) ; 9(21): e2105650, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35603963

RESUMO

Inflammation plays a crucial role in triggering regeneration, while inadequate or chronic inflammation hinders the regenerative process, resulting in refractory wounds. Inspired by the ideal regeneration mode in lower vertebrates and the human oral mucosa, realigning dysregulated inflammation to a heightened and acute response provides a promising option for refractory wound therapy. Neutrophils play important roles in inflammation initiation and resolution. Here, a hybrid biomaterial is used to stimulate transiently heightened inflammatory responses by precise tempospatial regulation of neutrophil recruitment and apoptosis. The hybrid biomaterial (Gel@fMLP/SiO2 -FasL) is constructed by loading of formyl-met-leu-phe (fMLP) and FasL-conjugated silica nanoparticles (SiO2 -FasL) into a pH-responsive hydrogel matrix. This composition enables burst release of fMLP to rapidly recruit neutrophils for heightened inflammation initiation. After neutrophils act to produce acids, the pH-responsive hydrogel degrades to expose SiO2 -FasL, which induces activated neutrophils apoptosis via FasL-Fas signaling triggering timely inflammation resolution. Apoptotic neutrophils are subsequently cleared by macrophages, and this efferocytosis activates key signalings to promote macrophage anti-inflammatory phenotypic transformation to drive regeneration. Ultimately, Gel@fMLP/SiO2 -FasL successfully promotes tissue regeneration by manipulating inflammation in critical-sized calvarial bone defects and diabetic cutaneous wound models. This work provides a new strategy for refractory wound therapy via inducing transiently heightened inflammatory responses.


Assuntos
Materiais Biocompatíveis , Dióxido de Silício , Animais , Humanos , Hidrogéis , Inflamação , Cicatrização
13.
Mol Ther ; 30(10): 3193-3208, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35538661

RESUMO

Extracellular vesicles (EVs) derived from living cells play important roles in donor cell-induced recipient tissue regeneration. Although numerous studies have found that cells undergo apoptosis after implantation in an ischemic-hypoxic environment, the roles played by the EVs released by apoptotic cells are largely unknown. In this study, we obtained apoptotic vesicles (apoVs) derived from human deciduous pulp stem cells and explored their effects on the dental pulp regeneration process. Our work showed that apoVs were ingested by endothelial cells (ECs) and elevated the expression of angiogenesis-related genes, leading to pulp revascularization and tissue regeneration. Furthermore, we found that, at the molecular level, apoV-carried mitochondrial Tu translation elongation factor was transported and regulated the angiogenic activation of ECs via the transcription factor EB-autophagy pathway. In a beagle model of dental pulp regeneration in situ, apoVs recruited endogenous ECs and facilitated the formation of dental-pulp-like tissue rich in blood vessels. These findings revealed the significance of apoptosis in tissue regeneration and demonstrated the potential of using apoVs to promote angiogenesis in clinical applications.


Assuntos
Polpa Dentária , Vesículas Extracelulares , Animais , Autofagia , Cães , Células Endoteliais , Humanos , Fatores de Alongamento de Peptídeos , Regeneração , Fatores de Transcrição
14.
Biomaterials ; 279: 121223, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34736149

RESUMO

Harnessing developmental processes for tissue engineering represents a promising yet challenging approach to regenerative medicine. Tooth avulsion is among the most serious traumatic dental injuries, whereas functional tooth regeneration remains uncertain. Here, we established a strategy using decellularized tooth matrix (DTM) combined with human dental pulp stem cell (hDPSC) aggregates to simulate an odontogenesis-related developmental microenvironment. The bioengineered teeth reconstructed by this strategy regenerated three-dimensional pulp and periodontal tissues equipped with vasculature and innervation in a preclinical pig model after implantation into the alveolar bone. These results prompted us to enroll 15 patients with avulsed teeth after traumatic dental injuries in a pilot clinical trial. At 12 months after implantation, bioengineered teeth led to the regeneration of functional teeth, which supported continued root development, in humans. Mechanistically, exosomes derived from hDPSC aggregates mediated the tooth regeneration process by upregulating the odontogenic and angiogenic ability of hDPSCs. Our findings suggest that odontogenic microenvironment engineering by DTM and stem cell aggregates initiates functional tooth regeneration and serves as an effective treatment for tooth avulsion.


Assuntos
Avulsão Dentária , Dente , Animais , Diferenciação Celular , Polpa Dentária , Humanos , Odontogênese , Células-Tronco , Suínos
15.
Stem Cells Int ; 2021: 8138374, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434241

RESUMO

Early orthodontic correction of skeletal malocclusion takes advantage of mechanical force to stimulate unclosed suture remodeling and to promote bone reconstruction; however, the underlying mechanisms remain largely unclear. Gli1+ cells in maxillofacial sutures have been shown to participate in maxillofacial bone development and damage repair. Nevertheless, it remains to be investigated whether these cells participate in mechanical force-induced bone remodeling during orthodontic treatment of skeletal malocclusion. In this study, rapid maxillary expansion (RME) mouse models and mechanical stretch loading cell models were established using two types of transgenic mice which are able to label Gli1+ cells, and we found that Gli1+ cells participated in mechanical force-induced osteogenesis both in vivo and in vitro. Besides, we found mechanical force-induced osteogenesis through inositol 1,4,5-trisphosphate receptor (IP3R), and we observed for the first time that inhibition of Gli1 suppressed an increase in mechanical force-induced IP3R overexpression, suggesting that Gli1+ cells participate in mechanical force-induced osteogenesis through IP3R. Taken together, this study is the first to demonstrate that Gli1+ cells in maxillofacial sutures are involved in mechanical force-induced bone formation through IP3R during orthodontic treatment of skeletal malocclusion. Furthermore, our results provide novel insights regarding the mechanism of orthodontic treatments of skeletal malocclusion.

16.
Cell Prolif ; 54(7): e13074, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34101281

RESUMO

OBJECTIVES: Pulp regeneration brings big challenges for clinicians, and vascularization is considered as its determining factor. We previously accomplished pulp regeneration with autologous stem cells from deciduous teeth (SHED) aggregates implantation in teenager patients, however, the underlying mechanism needs to be clarified for regenerating pulp in adults. Serving as an important effector of mesenchymal stem cells (MSCs), exosomes have been reported to promote angiogenesis and tissue regeneration effectively. Here, we aimed to investigate the role of SHED aggregate-derived exosomes (SA-Exo) in the angiogenesis of pulp regeneration. MATERIALS AND METHODS: We extracted exosomes from SHED aggregates and utilized them in the pulp regeneration animal model. The pro-angiogenetic effects of SA-Exo on SHED and human umbilical vein endothelial cells (HUVECs) were evaluated. The related mechanisms were further investigated. RESULTS: We firstly found that SA-Exo significantly improved pulp tissue regeneration and angiogenesis in vivo. Next, we found that SA-Exo promoted SHED endothelial differentiation and enhanced the angiogenic ability of HUVECs, as indicated by the in vitro tube formation assay. Mechanistically, miR-26a, which is enriched in SA-Exo, improved angiogenesis both in SHED and HUVECs via regulating TGF-ß/SMAD2/3 signalling. CONCLUSIONS: In summary, these data reveal that SA-Exo shuttled miR-26a promotes angiogenesis via TGF-ß/SMAD2/3 signalling contributing to SHED aggregate-based pulp tissue regeneration. These novel insights into SA-Exo may facilitate the development of new strategies for pulp regeneration.


Assuntos
Polpa Dentária/fisiologia , Exossomos/metabolismo , MicroRNAs/metabolismo , Neovascularização Fisiológica , Transdução de Sinais , Compostos de Anilina/farmacologia , Antagomirs/metabolismo , Compostos de Benzilideno/farmacologia , Diferenciação Celular/efeitos dos fármacos , Exossomos/transplante , Células Endoteliais da Veia Umbilical Humana , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Neovascularização Fisiológica/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Dente Decíduo/citologia , Fator de Crescimento Transformador beta/metabolismo
17.
Front Physiol ; 12: 656588, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967826

RESUMO

Dental pulp as a source of nutrition for the whole tooth is vulnerable to trauma and bacterial invasion, which causes irreversible pulpitis and pulp necrosis. Dental pulp regeneration is a valuable method of restoring the viability of the dental pulp and even the whole tooth. Odontogenic mesenchymal stem cells (MSCs) residing in the dental pulp environment have been widely used in dental pulp regeneration because of their immense potential to regenerate pulp-like tissue. Furthermore, the regenerative abilities of odontogenic MSCs are easily affected by the microenvironment in which they reside. The natural environment of the dental pulp has been proven to be capable of regulating odontogenic MSC homeostasis, proliferation, and differentiation. Therefore, various approaches have been applied to mimic the natural dental pulp environment to optimize the efficacy of pulp regeneration. In addition, odontogenic MSC aggregates/spheroids similar to the natural dental pulp environment have been shown to regenerate well-organized dental pulp both in preclinical and clinical trials. In this review, we summarize recent progress in odontogenic MSC-mediated pulp regeneration and focus on the effect of the microenvironment surrounding odontogenic MSCs in the achievement of dental pulp regeneration.

19.
Biochem Biophys Res Commun ; 529(4): 1158-1164, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32819580

RESUMO

Dental pulp, plays an indispensable role in maintaining homeostasis of the tooth. Pulp necrosis always causes tooth nutrition deficiency and abnormal root development, which leads to tooth discoloration, fracture or even loss. Our previous study showed implantation of autologous SHED could regenerate functional dental pulp. However, the detailed mechanism of the implanted SHED participating in dental pulp regeneration remains unknown. In this study, we implanted SHED in a porcine dental pulp regeneration model to evaluate the regenerative effect and identify whether SHED promoted angiogenesis in regenerated dental pulp. Firstly we verified that xenogenous SHED had the ability to regenerated pulp tissue of host in vivo. Then we found the vasculature in regenerated pulp originated from implanted SHED. In addition, stem cells were isolated from regenerated dental pulp, which exhibited good multi-differentiation properties and promoted angiogenesis in pulp regeneration process and these results demonstrated that SHED promoted angiogenesis in stem cell-mediated dental pulp regeneration.


Assuntos
Polpa Dentária/fisiologia , Neovascularização Fisiológica , Regeneração , Células-Tronco/citologia , Esfoliação de Dente/fisiopatologia , Dente Decíduo/fisiologia , Animais , Polpa Dentária/irrigação sanguínea , Polpa Dentária/inervação , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células-Tronco Multipotentes/citologia , Suínos , Porco Miniatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA