Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(1): 892-900, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38151507

RESUMO

Layered compounds characterized by van der Waals gaps are often associated with relatively weak interlayer particle interactions. However, in specific scenarios, these seemingly feeble forces can exert an impact on interlayer interactions through subtle energy fluctuations, which can give rise to a diverse range of physical and chemical properties, particularly intriguing in the context of thermal transport. In this study, taking a natural superlattice composed of alternately stacked PbS and SnS2 sublayers as a model, we proposed that in a superlattice, there is strong hybridization between acoustic phonons of heavy sublayers and optical phonons of light sublayers. We identified newly generated vibration modes in the superlattice, such as interlayer shear and breathing, which exhibit lower sound velocity and contribute less to heat transport compared to their parent materials, which significantly alters the thermal behaviors of the superlattice compared to its bulk counterparts. Our findings on the behavior of interlayer phonons in superlattices not only can shed light on developing functional materials with enhanced thermal dissipation capabilities but also contribute to the broader field of condensed matter physics, offering insights into various fields, including thermoelectrics and phononic devices, and may pave the way for technological advancements in these areas.

2.
ACS Appl Mater Interfaces ; 15(34): 40569-40578, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37590335

RESUMO

Developing self-powered smart wireless sensor networks by harvesting industrial environmental weak vibration energy remains a challenge and an impending need for enabling the widespread rollout of the industrial internet of things (IIoT). This work reports a self-powered wireless temperature and vibration monitoring system (WTVMS) based on a vibrational triboelectric nanogenerator (V-TENG) and a piezoelectric nanogenerator (PENG) for weak vibration energy collection and information sensing. Therein, the V-TENG can scavenge weak vibration energy down to 80 µm to power the system through a power management module, while the PENG is able to supply the frequency signal to the system by a comparison circuit. In an industrial vibration environment where the vibration frequency and amplitude are 20 Hz and 100 µm, respectively, the WTVMS can upload temperature and frequency information on the equipment to the cloud in combination with the narrowband IoT technology to realize real-time information monitoring. Furthermore, the WTVMS can work continuously for more than 2 months, during which the V-TENG can operate up to 100 million cycles, achieving ultrahigh stability and durability. By integrating weak vibration energy harvesting and active sensing technology, the WTVMS can be used for real-time online monitoring and early fault diagnosis of vibration equipment, which has great application prospects in industrial production, machinery manufacturing, traffic transportation, and intelligent IIoT.

3.
Micromachines (Basel) ; 14(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36677251

RESUMO

During long-term use, MEMS accelerometers will experience degradation, such as bias and scale factor changes. Bias of MEMS capacitive accelerometers usually comes from the mismatch of parasitic capacitance and sensitive capacitance. This paper focuses on the mismatch of sensitive capacitance and analyzes the mechanism of long-term degradation of MEMS accelerometers. Firstly, the effect of sensitive capacitance mismatch on the performance of a MEMS accelerometer was investigated. Secondly, a method of measuring the mismatch of sensitive capacitance was proposed, and the validation experiment shows that the accuracy of this measurement can be less than 1.10×10−5 of the sensitive capacitance. For the samples in this experiment, the measurement error of this method can be less than 0.36 fF. Finally, a high-temperature acceleration experiment was performed. The mismatch of the sensitive capacitance during the experiment was monitored based on the proposed method, and the experimental results are analyzed. The experimental result demonstrates that the mismatch of sensitive capacitance varies linearly with time. The change rates of sensitive capacitance mismatch for the two samples are 2.95×10−7 C0/h and 2.66×10−7 C0/h in the high-temperature acceleration experiment at 145 °C, respectively. The change in sensitive capacitance mismatch seems small, but it is not to be ignored during long-term use. The rate of change is similar for the same batch of samples. This could imply that the adverse effects due to the mismatch of sensitive capacitance changes can be reduced by compensating for this variation.

4.
Anal Methods ; 13(9): 1110-1120, 2021 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-33587733

RESUMO

Three-dimensional hierarchically porous carbon (denoted as SA-900) with a microporous, mesoporous and macroporous structure was facilely fabricated via direct carbonization of sodium alginate. SA-900 was fully characterized by N2 adsorption-desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction and Raman spectroscopy to confirm its structure. SA-900 was coated onto a glassy carbon electrode surface to construct an ultrasensitive electrochemical sensing platform (SA-900/GCE). Electrochemical behaviors of hydroquinone (HQ), catechol (CC) and resorcinol (RC) on the SA-900/GCE surface were investigated, and it was found that SA-900 possesses excellent electrocatalytic activity towards them. Experimental conditions including carbonization temperature, pH value, SA-900 concentration, accumulation potential and accumulation time were optimized for quantitative assay. Under optimized conditions, linear ranges for simultaneous determination of HQ, CC and RC are 0.05-1.50 µM, 0.05-1.50 µM and 0.50-15.00 µM, respectively. Detection limits for HQ, CC and RC are calculated to be 0.0183 µM, 0.0303 µM and 0.3193 µM (S/N = 3). The SA-900/GCE based electrochemical sensing platform is applied for determining HQ, CC and RC in lake water samples with satisfactory results.

5.
Sci Rep ; 11(1): 830, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436907

RESUMO

Bubble pressure and elastic response in helium-irradiated tungsten are systematically investigated in this study. An anomalous shape effect is found that the radial normal stress and mean stress distributions around a nanosized void or bubble are far from the spherical symmetry, which is ascribed to polyhedral geometry characteristic of the nanosized bubble and physical mechanism transition from crystal surfaces dominated to the surface ledges and triple junctions dominated. Molecular simulation shows that Young-Laplace equation is not suitable for directly predicting equilibrium pressure for nanosized bubble in crystals. Consequently, a new criterion of average radial normal stress of spherical shell is proposed to polish the concept of equilibrium pressure of helium bubbles. Moreover, the dependences of bubble size, temperature and helium/vacancy ratio (He/Vac ratio) on the bubble pressure are all documented, which may provide an insight into the understanding of mechanical properties of helium-irradiated tungsten.

6.
Micromachines (Basel) ; 13(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35056227

RESUMO

For linear accelerometers, calibration with a precision centrifuge is a key technology, and the input acceleration imposed on the accelerometer should be accurately obtained in the calibration. However, there are often errors in the installation of sample that make the calibration inaccurate. To solve installation errors and obtain the input acceleration in the calibration of the accelerometer, a calibration method based on the rotation principle using a double turntable centrifuge is proposed in this work. The key operation is that the sub-turntable is rotated to make the input axis of the accelerometer perpendicular to the direction of the centripetal acceleration vector. Models of installation errors of angle and radius were built. Based on these models, the static radius and input acceleration can be obtained accurately, and the calibration of the scale factor, nonlinearity and asymmetry can be implemented. Using this method, measurements of the MEMS accelerometer with a range of ±30 g were carried out. The results show that the discrepancy of performance obtained from different installation positions was smaller than 100 ppm after calibrating the input acceleration. Moreover, the results using this method were consistent with those using the back-calculation method. These results demonstrate that the effectiveness of our proposed method was confirmed. This method can measure the static radius directly eliminating the installation errors of angle and radius, and it simplifies the accelerometer calibration procedure.

7.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 31(2): 235-239, 2017 02 15.
Artigo em Chinês | MEDLINE | ID: mdl-29786260

RESUMO

Objective: To determine the efficacy of D980-nm laser in dissolving fat and renewing skin, and to explore the clinical application of D980-nm laser in reconstruction of photodamaged skin. Methods: Eighteen 12-14 month-old male Sprague-Dawley rats, weighing 400-450 g, were randomly divided into 3 groups ( n=6). The rat skin at the left side was exposed to D980-nm laser irradiation at a density of 20 J/cm 2, a power of 8 W, a pulse width of 20 ms, and a pulse frequency of 40 Hz for 1 time (group A), 2 times of 5-minute interval (group B), and 3 times of 5-minute interval (group C) as a treatment course, for 4 treatment courses with an interval of 1 week; the other side of the skin was not treated as the control groups (groups A1, B1, and C1, respectively). After 8 weeks, the skin was harvested for HE staining and immunohistochemical staining to observe the structure changes of skin, to measure the dermal thickness, to count the number of fibroblasts, and detect the expressions of transforming growth factor ß 1 (TGF-ß 1) and basic fibroblast growth factor (bFGF). Results: Compared with groups A1, B1, and C1, the skin structure was significantly improved in groups A, B, and C. After D980-nm laser irradiation, the number of fat cells decreased; local angiogenesis was observed; the total number of fibroblasts and fibers increased; the collagen fiber had large diameter, and arranged closely and regularly; the dermal thickness and the number of the fibroblasts increased; and the expressions of TGF-ß 1 and bFGF were significantly enhanced, showing significant differences ( P<0.05). With increased D980-nm laser irradiation times, the above indexes increased, showing significant differences between group C and groups A, B ( P<0.05). Conclusion: D980-nm laser treatment has lipolytic and tender effect on the skin, and the frequency of the treatment is an important factor in skin renewal.


Assuntos
Fibroblastos/metabolismo , Terapia a Laser , Tecido Adiposo , Animais , Fator 2 de Crescimento de Fibroblastos/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Pele , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA