Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780654

RESUMO

Wax printing is the most widely used method for fabricating microfluidic paper-based analytical devices (µPADs), but it still suffers from disadvantages like discontinuation of wax printers and need for additional equipment for heating treatment. To address these issues, this work initially describes a new class of wax printing approach for high-precision, batch fabrication of µPADs using a household 3D printer. It only involves a one patterning step of printing polyethylene wax into rice paper body. Under optimized parameters, a fabrication resolution, namely the minimum hydrophilic channel width, down to ~189 ± 30 µm could be achieved. In addition, the analytical applicability of such polyethylene wax-patterned µPADs was demonstrated well with enhanced colorimetric detection of dopamine as a model analyte by combining metal-organic framework (MOF) based nanoenzymes (ZIF-67) with a smartphone (for portable quantitative readout). The developed nanosensor could linearly detect dopamine over a concentration range from 10 to 1000 µM, with a detection limit of ca. 2.75 µM (3σ). The recovery results for analyzing several real samples (i.e., pig feed, chicken feed, pork and human serum) were between 91.82 and 102.79%, further validating its good detection accuracy for potential practical applications in food safety and medical diagnosis.

2.
Anal Bioanal Chem ; 416(8): 1821-1832, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38363308

RESUMO

This paper describes initially the application of the Tyndall effect (TE) of metal-organic framework (MOF) materials as a colorimetric signaling strategy for the sensitive detection of pyrophosphate ion (PPi). The used MOF NH2-MIL-101(Fe) was prepared with Fe3+ ions and fluorescent ligands of 2-amino terephthalic acid (NH2-BDC). The fluorescence of NH2-BDC in MOF is quenched due to the ligand-to-metal charge transfer effect, while the NH2-MIL-101(Fe) suspension shows a strong TE. In the presence of PPi analyte, the MOFs will undergo decomposition because of the competitive binding of Fe3+ by PPi over NH2-BDC, resulting in a significant decrease in the TE signal and fluorescence restoration from the released ligands. The results demonstrate that the new method only requires a laser pointer pen (for TE creation) and a smartphone (for portable quantitative readout) to detect PPi in a linear concentration range of 1.25-800 µM, with a detection limit of ~210 nM (3σ) which is ~38 times lower than that obtained from traditional fluorescence with a spectrophotometer (linear concentration range, 50-800 µM; detection limit, 8.15 µM). Moreover, the acceptable recovery of PPi in several real samples (i.e., pond water, black tea, and human serum and urine) ranges from 97.66 to 119.15%.


Assuntos
Estruturas Metalorgânicas , Humanos , Estruturas Metalorgânicas/química , Colorimetria/métodos , Difosfatos/química , Aminoácidos
3.
Anal Bioanal Chem ; 415(14): 2705-2713, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37017723

RESUMO

This work describes two new colorimetric nanosensors for label-free, equipment-free quantitative detection of nanomolar copper (II) (Cu2+) and mercury (II) (Hg2+) ions. Both are based on the analyte-promoted growth of Au nanoparticles (AuNPs) from the reduction of chloroauric acid by 4-morpholineethanesulfonic acid. For the Cu2+ nanosensor, the analyte can accelerate such a redox system to rapidly form a red solution containing dispersed, uniform, spherical AuNPs that is related to these particles' surface plasmon resonance property. For the Hg2+ nanosensor, on the other hand, a blue mixture consisting of aggregated, ill-defined AuNPs with various sizes can be created, showing a significantly enhanced Tyndall effect (TE) signal (in comparison with that produced in the red solution of AuNPs). By using a timer and a smartphone to quantitatively measure the time of producing the red solution and the TE intensity (i.e., the average gray value of the corresponding image) of the blue mixture, respectively, the developed nanosensors are well demonstrated to achieve linear ranges of 6.4 nM to 100 µM and 6.1 nM to 1.56 µM for Cu2+ and Hg2+, respectively, with detection limits down to 3.5 and 0.1 nM, respectively. The acceptable recovery results obtained from the analysis of the two analytes in the complex real water samples including drinking water, tap water, and pond water ranged from 90.43 to 111.56%.

4.
Photochem Photobiol Sci ; 22(3): 631-640, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36436206

RESUMO

This work describes two new colorimetric methods for smartphone-based point-of-care nanosensing of toxic Ag+ ions. They were based on the analyte-triggered in situ "off-on" of Tyndall effect (TE) of non-plasmonic colloid or plasmonic metal nanoprobes. The first TE-inspired assay (TEA) focused on the initial analytical application of precipitation reactions where a non-plasmonic AgCl colloid could be formed once mixing the analyte with a NaCl solution. Such AgCl colloid displayed strong visual TE signals after their irradiation by a laser pointer pen, which unexpectedly achieved a detection limit of ~ 400 nM. The second TEA was further designed to reduce the limit down to ~ 78 nM using the analyte's oxidizability towards 3,3',5,5'-tetramethylbenzidine molecules. The redox reaction could create positively charged products that could make negatively charged plasmonic gold nanoparticles aggregate through electrostatic interactions to remarkably amplify their TE responses. Both limits were lower than the minimum allowable Ag+ level (~ 460 nM) in drinking water issued by the World Health Organization. The satisfactory recovery results for detecting Ag+ ions in river, pond, tap, and drinking water additionally demonstrated good selectivity, accuracy and practicality of the proposed methods for potential point-of-need uses in environmental analysis, public health, water safety, etc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA