Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; PP2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587958

RESUMO

In the studies of neurodegenerative diseases such as Alzheimer's Disease (AD), researchers often focus on the associations among multi-omics pathogeny based on imaging genetics data. However, current studies overlook the communities in brain networks, leading to inaccurate models of disease development. This paper explores the developmental patterns of AD from the perspective of community evolution. We first establish a mathematical model to describe functional degeneration in the brain as the community evolution driven by entropy information propagation. Next, we propose an interpretable Community Evolutionary Generative Adversarial Network (CE-GAN) to predict disease risk. In the generator of CE-GAN, community evolutionary convolutions are designed to capture the evolutionary patterns of AD. The experiments are conducted using functional magnetic resonance imaging (fMRI) data and single nucleotide polymorphism (SNP) data. CE-GAN achieves 91.67% accuracy and 91.83% area under curve (AUC) in AD risk prediction tasks, surpassing advanced methods on the same dataset. In addition, we validated the effectiveness of CE-GAN for pathogeny extraction. The source code of this work is available at https://github.com/fmri123456/CE-GAN.

2.
IEEE Trans Pattern Anal Mach Intell ; 46(4): 2252-2266, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37930908

RESUMO

Multi-view learning is dedicated to integrating information from different views and improving the generalization performance of models. However, in most current works, learning under different views has significant independency, overlooking common information mapping patterns that exist between these views. This paper proposes a Structure Mapping Generative adversarial network (SM-GAN) framework, which utilizes the consistency and complementarity of multi-view data from the innovative perspective of information mapping. Specifically, based on network-structured multi-view data, a structural information mapping model is proposed to capture hierarchical interaction patterns among views. Subsequently, three different types of graph convolutional operations are designed in SM-GAN based on the model. Compared with regular GAN, we add a structural information mapping module between the encoder and decoder wthin the generator, completing the structural information mapping from the micro-view to the macro-view. This paper conducted sufficient validation experiments using public imaging genetics data in Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. It is shown that SM-GAN outperforms baseline and advanced methods in multi-label classification and evolution prediction tasks.

3.
Front Oncol ; 13: 1001219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845714

RESUMO

Background: Lung metastases (LM) have a poor prognosis of osteosarcoma. This study aimed to predict the risk of LM using the nomogram in patients with osteosarcoma. Methods: A total of 1100 patients who were diagnosed as osteosarcoma between 2010 and 2019 in the Surveillance, Epidemiology and End Results (SEER) database were selected as the training cohort. Univariate and multivariate logistic regression analyses were used to identify independent prognostic factors of osteosarcoma lung metastases. 108 osteosarcoma patients from a multicentre dataset was as valiation data. The predictive power of the nomogram model was assessed by receiver operating characteristic curves (ROC) and calibration plots, and decision curve analysis (DCA) was utilized to interpret the accurate validity in clinical practice. Results: A total of 1208 patients with osteosarcoma from both the SEER database(n=1100) and the multicentre database (n=108) were analyzed. Univariate and multivariate logistic regression analyses showed that Survival time, Sex, T-stage, N-stage, Surgery, Radiation, and Bone metastases were independent risk factors for lung metastasis. We combined these factors to construct a nomogram for estimating the risk of lung metastasis. Internal and external validation showed significant predictive differences (AUC 0.779, 0.792 respectively). Calibration plots showed good performance of the nomogram model. Conclusions: In this study, a nomogram model for predicting the risk of lung metastases in osteosarcoma patients was constructed and turned out to be accurate and reliable through internal and external validation. Moreover we built a webpage calculator (https://drliwenle.shinyapps.io/OSLM/) taken into account nomogram model to help clinicians make more accurate and personalized predictions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA