RESUMO
Reports have described SARS-CoV-2 rebound in COVID-19 patients treated with nirmatrelvir, a 3CL protease inhibitor. The cause remains a mystery, although drug resistance, re-infection, and lack of adequate immune responses have been excluded. We now present virologic findings that provide a clue to the cause of viral rebound, which occurs in â¼20% of the treated cases. Persistence of infectious SARS-CoV-2 was experimentally documented in vitro after treatment with nirmatrelvir or another 3CL protease inhibitor, but not with a polymerase inhibitor, remdesivir. This infectious form decayed slowly with a half-life of â¼1 day, suggesting that its persistence could outlive the treatment course to re-ignite SARS-CoV-2 infection as the drug is eliminated. Notably, extending nirmatrelvir treatment beyond 8 days abolished viral rebound in vitro. Our findings point in a particular direction for future investigation of virus persistence and offer a specific treatment recommendation that should be tested clinically.
RESUMO
Background: Colon adenocarcinoma (COAD) is a serious public health issue due to high incidence and mortality rate. This study aimed to identify possible tumor antigens and necroptosis subtypes of COAD for the development of mRNA vaccines and the selection of appropriate patients for precision therapy. Methods: Gene expression profiles and clinical information for COAD were obtained from The Cancer Genome Atlas and Gene Expression Omnibus, respectively. We comprehensively studied the alterations in necroptosis-related genes (NRGs) using cBioPortal, and screened the hub NRGs associated with the prognosis of patients with COAD using Gene Expression Profiling Interactive Analysis 2. Consensuses clustering analysis was performed to identify necroptosis subtypes. Weighted gene co-expression network analysis (WGCNA) was used to identify the co-expression modules of the NRGs. The necroptosis landscape of COAD was assessed using graph learning-based dimensionality reduction. Finally, a drug sensitivity analysis of the two necroptosis subtypes was performed. Findings: Two tumor antigens, BLC-2-associated X protein (BAX) and interleukin 1 beta (IL1B) were identified based on their associations with prognosis of patients and antigen presenting cell infiltration. Two necroptosis subtypes (N1 and N2) were distinguished in patients with COAD, and they were characterized by their differential survival status and molecular expression levels of immune checkpoint proteins and immunogenetic cell death modulators. Furthermore, the necroptosis landscape of COAD indicated that individual patients had obvious heterogeneity. Co-expression modules were identified using WGCNA, and the hub NRGs were found to be involved in various immune processes. Drug sensitivity analysis indicated that there were significant differences in drug sensitivity between the N1 and N2 subtypes. Cell experiments suggested that both overexpression of BAX and IL1B promoted necroptosis of COAD cells and enhanced the cytotoxicity of CD8+ T cells. Interpretation: BAX and IL1B are potential antigens for the development of anti-COAD mRNA vaccines, specifically for patients with the N2 subtype. Consequently, this study will guide the development of more effective immunotherapeutic approaches and the identification of appropriate patients.
RESUMO
OBJECTIVES: Acute lung injury is a critical complication of severe acute pancreatitis (SAP). The gut microbiota and its metabolites play an important role in SAP development and may provide new targets for AP-associated lung injury. Based on the ability to reverse AP injury, we proposed that Clostridium butyricum may reduce the potential for AP-associated lung injury by modulating with intestinal microbiota and related metabolic pathways. METHODS: An AP disease model was established in mice and treated with C. butyricum. The structure and composition of the intestinal microbiota in mouse feces were analyzed by 16 S rRNA gene sequencing. Non-targeted metabolite analysis was used to quantify the microbiota derivatives. The histopathology of mouse pancreas and lung tissues was examined using hematoxylin-eosin staining. Pancreatic and lung tissues from mice were stained with immunohistochemistry and protein immunoblotting to detect inflammatory factors IL-6, IL-1ß, and MCP-1. RESULTS: C. butyricum ameliorated the dysregulation of microbiota diversity in a model of AP combined with lung injury and affected fatty acid metabolism by lowering triglyceride levels, which were closely related to the alteration in the relative abundance of Erysipelatoclostridium and Akkermansia. In addition, C. butyricum treatment attenuated pathological damage in the pancreatic and lung tissues and significantly suppressed the expression of inflammatory factors in mice. CONCLUSIONS: C. butyricum may alleviate lung injury associated with AP by interfering with the relevant intestinal microbiota and modulating relevant metabolic pathways.
Assuntos
Clostridium butyricum , Modelos Animais de Doenças , Microbioma Gastrointestinal , Metabolômica , Pancreatite , RNA Ribossômico 16S , Animais , RNA Ribossômico 16S/genética , Camundongos , Pancreatite/microbiologia , Pancreatite/metabolismo , Pancreatite/patologia , Metabolômica/métodos , Lesão Pulmonar Aguda/microbiologia , Lesão Pulmonar Aguda/patologia , Probióticos/administração & dosagem , Masculino , Fezes/microbiologia , Pâncreas/patologia , Pâncreas/microbiologia , Pulmão/microbiologia , Pulmão/patologiaRESUMO
Graphene quantum dots (GQDs) have attracted significant attention in biomedicine, while extensive investigations have revealed a reverse regarding the potential biotoxicity of GQDs. In order to supplementing the understanding of the toxicity profile of GQDs, this study employs a molecular dynamics (MD) simulation approach to systematically investigate the potential toxicity of both GQDs and Graphene Oxide Quantum Dots (GOQDs) on the Anterior Gradient Homolog 2 (AGR2) protein, a key protein capable of protecting the intestine. We construct two typical simulation systems, in which an AGR2 protein is encircled by either GQDs or GOQDs. The MD results demonstrate that both GQDs and GOQDs can directly make contact with and even cover the active site (specifically, the Cys81 amino acid) of the AGR2 protein. This suggests that GQDs and GOQDs have the capability to inhibit or interfere with the normal biological interaction of the AGR2 active site with its target protein. Thus, GQDs and GOQDs exhibit potential detrimental effects on the AGR2 protein. Detailed analyses reveal that GQDs adhere to the Cys81 residue due to van der Waals (vdW) interaction forces, whereas GOQDs attach to the Cys81 residue through a combination of vdW (primary) and Coulomb (secondary) interactions. Furthermore, GQDs aggregation typically adsorb onto the AGR2 active site, while GOQDs adsorb to the active site of AGR2 one by one. Consequently, these findings shed new light on the potential adverse impact of GQDs and GOQDs on the AGR2 protein via directly covering the active site of AGR2, providing valuable molecular insights for the toxicity profile of GQD nanomaterials.
Assuntos
Grafite , Mucoproteínas , Pontos Quânticos , Domínio Catalítico , Grafite/toxicidade , Grafite/química , Simulação de Dinâmica Molecular , Óxidos , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Mucoproteínas/metabolismo , Proteínas Oncogênicas/metabolismoRESUMO
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has affected approximately 800 million people since the start of the Coronavirus Disease 2019 (COVID-19) pandemic. Because of the high rate of mutagenesis in SARS-CoV-2, it is difficult to develop a sustainable approach for prevention and treatment. The Envelope (E) protein is highly conserved among human coronaviruses. Previous studies reported that SARS-CoV-1 E deficiency reduced viral propagation, suggesting that E inhibition might be an effective therapeutic strategy for SARS-CoV-2. Here, we report inhibitory peptides against SARS-CoV-2 E protein named iPep-SARS2-E. Leveraging E-induced alterations in proton homeostasis and NFAT/AP-1 pathway in mammalian cells, we developed screening platforms to design and optimize the peptides that bind and inhibit E protein. Using Vero-E6 cells, human-induced pluripotent stem cell-derived branching lung organoid and mouse models with SARS-CoV-2, we found that iPep-SARS2-E significantly inhibits virus egress and reduces viral cytotoxicity and propagation in vitro and in vivo. Furthermore, the peptide can be customizable for E protein of other human coronaviruses such as Middle East Respiratory Syndrome Coronavirus (MERS-CoV). The results indicate that E protein can be a potential therapeutic target for human coronaviruses.
Assuntos
COVID-19 , SARS-CoV-2 , Camundongos , Animais , Chlorocebus aethiops , Humanos , Linhagem Celular , Células Vero , Peptídeos/farmacologia , MamíferosRESUMO
COVID-19 patients commonly present with signs of central nervous system and/or peripheral nervous system dysfunction. Here, we show that midbrain dopamine (DA) neurons derived from human pluripotent stem cells (hPSCs) are selectively susceptible and permissive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. SARS-CoV-2 infection of DA neurons triggers an inflammatory and cellular senescence response. High-throughput screening in hPSC-derived DA neurons identified several FDA-approved drugs that can rescue the cellular senescence phenotype by preventing SARS-CoV-2 infection. We also identified the inflammatory and cellular senescence signature and low levels of SARS-CoV-2 transcripts in human substantia nigra tissue of COVID-19 patients. Furthermore, we observed reduced numbers of neuromelanin+ and tyrosine-hydroxylase (TH)+ DA neurons and fibers in a cohort of severe COVID-19 patients. Our findings demonstrate that hPSC-derived DA neurons are susceptible to SARS-CoV-2, identify candidate neuroprotective drugs for COVID-19 patients, and suggest the need for careful, long-term monitoring of neurological problems in COVID-19 patients.
Assuntos
COVID-19 , Células-Tronco Pluripotentes , Humanos , SARS-CoV-2 , Neurônios Dopaminérgicos , Sistema Nervoso CentralRESUMO
Graphene quantum dots (GQDs) have garnered significant attention, particularly in the biomedical domain. However, extensive research reveals a dichotomy concerning the potential toxicity of GQDs, presenting contrasting outcomes. Therefore, a comprehensive understanding of GQD biosafety necessitates a detailed supplementation of their toxicity profile. In this study, employing a molecular dynamics (MD) simulation approach, we systematically investigate the potential toxicity of GQDs on the CYP3A4 enzyme. We construct two distinct simulation systems, wherein a CYP3A4 protein is enveloped by either GQDs or GOQDs (graphene oxide quantum dots). Our results elucidate that GQDs come into direct contact with the bottleneck residues of Channels 2a and 2b of CYP3A4. Furthermore, GQDs entirely cover the exits of Channels 2a and 2b, implying a significant hindrance posed by GQDs to these channels and consequently leading to toxicity towards CYP3A4. In-depth analysis reveals that the adsorption of GQDs to the exits of Channels 2a and 2b is driven by a synergistic interplay of hydrophobic and van der Waals (vdW) interactions. In contrast, GOQDs only partially obstruct Channel 1 of CYP3A4, indicating a weaker influence on CYP3A4 compared to GQDs. Our findings underscore the potential deleterious impact of GQDs on the CYP3A4 enzyme, providing crucial molecular insights into GQD toxicology.
Assuntos
Grafite , Pontos Quânticos , Grafite/farmacologia , Grafite/química , Citocromo P-450 CYP3A , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Simulação de Dinâmica Molecular , Sistema Enzimático do Citocromo P-450RESUMO
A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant, BA.2.86, has emerged and spread to numerous countries worldwide, raising alarm because its spike protein contains 34 additional mutations compared with its BA.2 predecessor1. We examined its antigenicity using human sera and monoclonal antibodies (mAbs). Reassuringly, BA.2.86 was no more resistant to human sera than the currently dominant XBB.1.5 and EG.5.1, indicating that the new subvariant would not have a growth advantage in this regard. Importantly, sera from people who had XBB breakthrough infection exhibited robust neutralizing activity against all viruses tested, suggesting that upcoming XBB.1.5 monovalent vaccines could confer added protection. Although BA.2.86 showed greater resistance to mAbs to subdomain 1 (SD1) and receptor-binding domain (RBD) class 2 and 3 epitopes, it was more sensitive to mAbs to class 1 and 4/1 epitopes in the 'inner face' of the RBD that is exposed only when this domain is in the 'up' position. We also identified six new spike mutations that mediate antibody resistance, including E554K that threatens SD1 mAbs in clinical development. The BA.2.86 spike also had a remarkably high receptor affinity. The ultimate trajectory of this new SARS-CoV-2 variant will soon be revealed by continuing surveillance, but its worldwide spread is worrisome.
Assuntos
Epitopos de Linfócito B , Receptores Virais , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Epitopos de Linfócito B/imunologia , Imunogenicidade da Vacina , Mutação , Receptores Virais/metabolismo , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Soros Imunes/imunologiaRESUMO
SARS-CoV-2 continues to evolve, with many variants evading clinically authorized antibodies. To isolate monoclonal antibodies (mAbs) with broadly neutralizing capacities against the virus, we screened serum samples from convalescing COVID-19 patients. We isolated two mAbs, 12-16 and 12-19, which neutralized all SARS-CoV-2 variants tested, including the XBB subvariants, and prevented infection in hamsters challenged with Omicron BA.1 intranasally. Structurally, both antibodies targeted a conserved quaternary epitope located at the interface between the N-terminal domain and subdomain 1, uncovering a site of vulnerability on SARS-CoV-2 spike. These antibodies prevented viral receptor engagement by locking the receptor-binding domain (RBD) of spike in the down conformation, revealing a mechanism of virus neutralization for non-RBD antibodies. Deep mutational scanning showed that SARS-CoV-2 could mutate to escape 12-19, but such mutations are rarely found in circulating viruses. Antibodies 12-16 and 12-19 hold promise as prophylactic agents for immunocompromised persons who do not respond robustly to COVID-19 vaccines.
Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Cricetinae , Humanos , Vacinas contra COVID-19 , SARS-CoV-2 , Receptores Virais , Anticorpos Monoclonais , Anticorpos Antivirais , Anticorpos NeutralizantesRESUMO
Prophylactic vaccines for SARS-CoV-2 have lowered the incidence of severe COVID-19, but emergence of viral variants that are antigenically distinct from the vaccine strains are of concern and additional, broadly acting preventive approaches are desirable. Here, we report on a glycolipid termed 7DW8-5 that exploits the host innate immune system to enable rapid control of viral infections in vivo. This glycolipid binds to CD1d on antigen-presenting cells and thereby stimulates NKT cells to release a cascade of cytokines and chemokines. The intranasal administration of 7DW8-5 prior to virus exposure significantly blocked infection by three different authentic variants of SARS-CoV-2, as well as by respiratory syncytial virus and influenza virus, in mice or hamsters. We also found that this protective antiviral effect is both host-directed and mechanism-specific, requiring both the CD1d molecule and interferon-[Formula: see text]. A chemical compound like 7DW8-5 that is easy to administer and cheap to manufacture may be useful not only in slowing the spread of COVID-19 but also in responding to future pandemics long before vaccines or drugs are developed.
Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Camundongos , Animais , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinas contra COVID-19RESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has been responsible for a global pandemic. Monoclonal antibodies (mAbs) have been used as antiviral therapeutics; however, these therapeutics have been limited in efficacy by viral sequence variability in emerging variants of concern (VOCs) and in deployment by the need for high doses. In this study, we leveraged the multi-specific, multi-affinity antibody (Multabody, MB) platform, derived from the human apoferritin protomer, to enable the multimerization of antibody fragments. MBs were shown to be highly potent, neutralizing SARS-CoV-2 at lower concentrations than their corresponding mAb counterparts. In mice infected with SARS-CoV-2, a tri-specific MB targeting three regions within the SARS-CoV-2 receptor binding domain was protective at a 30-fold lower dose than a cocktail of the corresponding mAbs. Furthermore, we showed in vitro that mono-specific MBs potently neutralize SARS-CoV-2 VOCs by leveraging augmented avidity, even when corresponding mAbs lose their ability to neutralize potently, and that tri-specific MBs expanded the neutralization breadth beyond SARS-CoV-2 to other sarbecoviruses. Our work demonstrates how avidity and multi-specificity combined can be leveraged to confer protection and resilience against viral diversity that exceeds that of traditional monoclonal antibody therapies.
Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Animais , Camundongos , SARS-CoV-2 , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , AntiviraisRESUMO
SARS-CoV-2 continues to evolve and evade most existing neutralizing antibodies, including all clinically authorized antibodies. We have isolated and characterized two human monoclonal antibodies, 12-16 and 12-19, which exhibited neutralizing activities against all SARS-CoV-2 variants tested, including BQ.1.1 and XBB.1.5. They also blocked infection in hamsters challenged with Omicron BA.1 intranasally. Structural analyses revealed both antibodies targeted a conserved quaternary epitope located at the interface between the N-terminal domain and subdomain 1, revealing a previously unrecognized site of vulnerability on SARS-CoV-2 spike. These antibodies prevent viral receptor engagement by locking the receptor-binding domain of spike in the down conformation, revealing a novel mechanism of virus neutralization for non-RBD antibodies. Deep mutational scanning showed that SARS-CoV-2 could mutate to escape 12-19, but the responsible mutations are rarely found in circulating viruses. Antibodies 12-16 and 12-19 hold promise as prophylactic agents for immunocompromised persons who do not respond robustly to COVID-19 vaccines.
RESUMO
A better understanding of the durability and breadth of serum-neutralizing antibody responses against multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants elicited by COVID-19 vaccines is crucial in addressing the current pandemic. In this study, we quantified the decay of serum neutralization antibodies (nAbs) after second and third doses of the original COVID-19 mRNA vaccine. Using an authentic virus-neutralization assay, we found that decay half-lives of WA1- and Delta-nAbs were both â¼60 days after second and third vaccine dose. Unexpectedly, the durability of serum antibodies that neutralize three different Omicron subvariants (BA.1.1, BA.5, BA.2.12.1) was substantially better, with half-lives of ≥6 months. A booster dose of the original COVID-19 vaccine was also found to broaden antibody responses against SARS-CoV and four other sarbecoviruses, in addition to multiple SARS-CoV-2 strains. These findings suggest that repeated vaccinations with the COVID-19 vaccine may confer a degree of protection against future spillover of sarbecoviruses from animal reservoirs.
RESUMO
Reports have described SARS-CoV-2 rebound in COVID-19 patients treated with nirmatrelvir, a 3CL protease inhibitor. The cause remains a mystery, although drug resistance, re-infection, and lack of adequate immune responses have been excluded. We now present virologic findings that provide a clue to the cause of viral rebound, which occurs in ~20% of the treated cases. The persistence of an intermediary form of infectious SARS-CoV-2 was experimentally documented in vitro after treatment with nirmatrelvir or another 3CL protease inhibitor, but not with a polymerase inhibitor, remdesivir. This infectious intermediate decayed slowly with a half-life of ~1 day, suggesting that its persistence could outlive the treatment course to re-ignited SARS-CoV-2 infection as the drug is eliminated. Additional studies are needed to define the nature of this viral intermediate, but our findings point to a particular direction for future investigation and offer a specific treatment recommendation that should be tested clinically.
RESUMO
Background: The combined impact of immunity and SARS-CoV-2 variants on viral kinetics during infections has been unclear. Methods: We characterized 1,280 infections from the National Basketball Association occupational health cohort identified between June 2020 and January 2022 using serial RT-qPCR testing. Logistic regression and semi-mechanistic viral RNA kinetics models were used to quantify the effect of age, variant, symptom status, infection history, vaccination status and antibody titer to the founder SARS-CoV-2 strain on the duration of potential infectiousness and overall viral kinetics. The frequency of viral rebounds was quantified under multiple cycle threshold (Ct) value-based definitions. Results: Among individuals detected partway through their infection, 51.0% (95% credible interval [CrI]: 48.3-53.6%) remained potentially infectious (Ct <30) 5 days post detection, with small differences across variants and vaccination status. Only seven viral rebounds (0.7%; N=999) were observed, with rebound defined as 3+days with Ct <30 following an initial clearance of 3+days with Ct ≥30. High antibody titers against the founder SARS-CoV-2 strain predicted lower peak viral loads and shorter durations of infection. Among Omicron BA.1 infections, boosted individuals had lower pre-booster antibody titers and longer clearance times than non-boosted individuals. Conclusions: SARS-CoV-2 viral kinetics are partly determined by immunity and variant but dominated by individual-level variation. Since booster vaccination protects against infection, longer clearance times for BA.1-infected, boosted individuals may reflect a less effective immune response, more common in older individuals, that increases infection risk and reduces viral RNA clearance rate. The shifting landscape of viral kinetics underscores the need for continued monitoring to optimize isolation policies and to contextualize the health impacts of therapeutics and vaccines. Funding: Supported in part by CDC contract #200-2016-91779, a sponsored research agreement to Yale University from the National Basketball Association contract #21-003529, and the National Basketball Players Association.
Assuntos
COVID-19 , Dermatite , Humanos , Idoso , SARS-CoV-2/genética , RNA Viral , Estudos Retrospectivos , COVID-19/epidemiologia , Anticorpos AntiviraisRESUMO
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant BA.2.75 emerged recently and appears to be spreading. It has nine mutations in spike compared with the currently circulating BA.2, raising concerns that it may further evade vaccine-elicited and therapeutic antibodies. We found BA.2.75 to be moderately more neutralization resistant to sera from vaccinated/boosted individuals than BA.2 (1.8-fold), similar to BA.2.12.1 (1.1-fold), but more neutralization sensitive than BA.4/5 (0.6-fold). Relative to BA.2, BA.2.75 showed heightened resistance to class 1 and class 3 monoclonal antibodies targeting the spike-receptor-binding domain while gaining sensitivity to class 2 antibodies. Resistance was largely conferred by G446S and R460K mutations. BA.2.75 was slightly resistant (3.7-fold) to bebtelovimab, a therapeutic antibody with potent activity against all Omicron subvariants. BA.2.75 also exhibited a higher binding affinity to host receptor ACE2 than other Omicron subvariants. BA.2.75 provides further insight into SARS-CoV-2 evolution as it gains transmissibility while incrementally evading antibody neutralization.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Testes de Neutralização , Anticorpos Monoclonais , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos NeutralizantesRESUMO
SARS-CoV-2 Omicron subvariants BA.2.12.1 and BA.4/5 have surged notably to become dominant in the United States and South Africa, respectively1,2. These new subvariants carrying further mutations in their spike proteins raise concerns that they may further evade neutralizing antibodies, thereby further compromising the efficacy of COVID-19 vaccines and therapeutic monoclonals. We now report findings from a systematic antigenic analysis of these surging Omicron subvariants. BA.2.12.1 is only modestly (1.8-fold) more resistant to sera from vaccinated and boosted individuals than BA.2. However, BA.4/5 is substantially (4.2-fold) more resistant and thus more likely to lead to vaccine breakthrough infections. Mutation at spike residue L452 found in both BA.2.12.1 and BA.4/5 facilitates escape from some antibodies directed to the so-called class 2 and 3 regions of the receptor-binding domain3. The F486V mutation found in BA.4/5 facilitates escape from certain class 1 and 2 antibodies but compromises the spike affinity for the viral receptor. The R493Q reversion mutation, however, restores receptor affinity and consequently the fitness of BA.4/5. Among therapeutic antibodies authorized for clinical use, only bebtelovimab retains full potency against both BA.2.12.1 and BA.4/5. The Omicron lineage of SARS-CoV-2 continues to evolve, successively yielding subvariants that are not only more transmissible but also more evasive to antibodies.
Assuntos
Anticorpos Antivirais , Deriva e Deslocamento Antigênicos , COVID-19 , Mutação , SARS-CoV-2 , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Deriva e Deslocamento Antigênicos/genética , Deriva e Deslocamento Antigênicos/imunologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Humanos , Imunização Secundária , Receptores Virais/metabolismo , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismoRESUMO
The SARS-CoV-2 3CL protease is a critical drug target for small molecule COVID-19 therapy, given its likely druggability and essentiality in the viral maturation and replication cycle. Based on the conservation of 3CL protease substrate binding pockets across coronaviruses and using screening, we identified four structurally distinct lead compounds that inhibit SARS-CoV-2 3CL protease. After evaluation of their binding specificity, cellular antiviral potency, metabolic stability, and water solubility, we prioritized the GC376 scaffold as being optimal for optimization. We identified multiple drug-like compounds with <10 nM potency for inhibiting SARS-CoV-2 3CL and the ability to block SARS-CoV-2 replication in human cells, obtained co-crystal structures of the 3CL protease in complex with these compounds, and determined that they have pan-coronavirus activity. We selected one compound, termed coronastat, as an optimized lead and characterized it in pharmacokinetic and safety studies in vivo. Coronastat represents a new candidate for a small molecule protease inhibitor for the treatment of SARS-CoV-2 infection for eliminating pandemics involving coronaviruses.
Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , Inibidores de Proteases , Antivirais/química , Antivirais/uso terapêutico , Proteases 3C de Coronavírus/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , Pandemias , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , SARS-CoV-2RESUMO
BACKGROUND: Colorectal cancer (CRC) is the third most common of cancer-related deaths. Nucleolar protein 14 (NOP14) is known to play different roles in diverse types of cancers. However, little is known about its roles in CRC. Here, we assessed the prognostic value and functions of NOP14 in CRC using the data from The Cancer Genome Atlas (TCGA) and validated them based on the data from Gene Expression Omnibus (GEO). METHODS: NOP14 mRNA and protein data in CRC was obtained from the TCGA, GEO, human protein atlas (HPA), and UALCAN databases. Survival and Cox regression analysis was performed to assess the prognostic value of NOP14 in CRC patients. Next, to evaluate the potential functions of NOP14, a protein-protein interaction (PPI) network was constructed and gene set enrichment analysis (GSEA) of differential expression genes (DEGs) associated with dysregulated NOP14 was performed. Finally, to investigate the immune response associated with NOP14 expression in CRC, we analyzed the correlations between immune cells infiltration and NOP14 expression level. Additionally, the correlations between immune molecule expression levels with NOP14 expression level were analyzed. RESULTS: High NOP14 mRNA expression was observed in CRC tissues based on the data from TCGA and GEO datasets. Similarly, high NOP14 protein levels were found in CRC tissues according to the immunohistochemical images from HPA. Interestingly, high NOP14 expression level was associated with an improved prognosis in CRC patients. Univariate and multivariate Cox regression analysis indicated that high NOP14 expression level was an independent protective factor for CRC patients. With the support of PPI network analysis, we found several risk genes interacted with NOP14. GSEA revealed that high NOP14 expression inhibited several signal pathways involved in tumor formation and development. Additionally, high NOP14 expression was positively associated with most kinds of immune cell infiltrations and the expression levels of some molecules related to immune activation. CONCLUSION: Altogether, these results indicated that high NOP14 expression leads to improved prognosis in CRC patients by inhibiting the signaling pathways involved in tumor growth and promoting the immune responses.