Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 210: 108663, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38678947

RESUMO

The vacuolar H+-ATPase (V-ATPase) is a multi-subunit membrane protein complex, which plays pivotal roles in building up an electrochemical H+-gradient across tonoplast, energizing Na+ sequestration into the central vacuole, and enhancing salt stress tolerance in plants. In this study, a B subunit of V-ATPase gene, PbVHA-B1 was discovered and isolated from stress-induced P. betulaefolia combining with RT-PCR method. The RT-qPCR analysis revealed that the expression level of PbVHA-B1 was upregulated by salt, drought, cold, and exogenous ABA treatment. Subcellular localization analyses showed that PbVHA-B1 was located in the cytoplasm and nucleus. Moreover, overexpression of PbVHA-B1 gene noticeably increased the ATPase activity and the tolerance to salt in transgenic Arabidopsis plants. In contrast, knockdown of PbVHA-B1 gene in P.betulaefolia by virus-induced gene silencing had reduced resistance to salt stress. In addition, using yeast one-hybride (Y1H) and yeast two-hybride (Y2H) screens, PbbHLH62, a bHLH transcription factor, was identified as a partner of the PbVHA-B1 promoter and protein. Then, we also found that PbbHLH62 positively regulate the expression of PbVHA-B1 and the ATPase activity after salt stress treatment. These findings provide evidence that PbbHLH62 played a critical role in the salt response. Collectively, our results demonstrate that a PbbHLH62/PbVHA-B1 module plays a positive role in salt tolerance by maintain intracellular ion and ROS homeostasis in pear.


Assuntos
Homeostase , Proteínas de Plantas , Pyrus , Espécies Reativas de Oxigênio , Tolerância ao Sal , Sódio , Tolerância ao Sal/genética , Pyrus/metabolismo , Pyrus/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Sódio/metabolismo , Plantas Geneticamente Modificadas , Potássio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Arabidopsis/genética , Arabidopsis/metabolismo
2.
Opt Express ; 26(24): 31794-31807, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30650759

RESUMO

Plasmon in two-dimensional electron gas (2DEG) has long been considered as a promising active medium for terahertz emitters and detectors. However, the efficiency of terahertz plasmonic devices is severely limited by the high damping rate of plasma wave in solid state. In addition to the enhancement of plasmon lifetime by using 2DEGs with higher carrier mobility, engineering on the boundary condition and electromagnetic environment of plasmon cavity helps to preserve the plasmon states. Here we report on terahertz reflection spectroscopy of plasmon states in a grating-coupled AlGaN/GaN-2DEG plasmonic device at 7 K in equilibrium with ambient blackbody irradiation. Localized plasmon states and plasmon-polariton states were observed when the core plasmonic device is integrated with a silicon lens and when it is embedded in a terahertz Fabry-Pérot cavity, respectively. Simulation results including the reflection spectra and total reflection power agree well with the measured results. The Rabi splitting is found to be inversely proportional to the resonance frequency, and follows a linear relation with the square root of the sheet electron density. A normalized coupling ratio, ΩRω0≈0.13, is achieved between the Rabi splitting ΩR and the resonance frequency ω0. The coupling ratio could be further increased to allow for ultrastrong coupling between terahertz photons and plasmons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA