Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37242547

RESUMO

Studies of the neurobiological causes of anxiety disorders have suggested that the γ-aminobutyric acid (GABA) system increases synaptic concentrations and enhances the affinity of GABAA (type A) receptors for benzodiazepine ligands. Flumazenil antagonizes the benzodiazepine-binding site of the GABA/benzodiazepine receptor (BZR) complex in the central nervous system (CNS). The investigation of flumazenil metabolites using liquid chromatography (LC)-tandem mass spectrometry will provide a complete understanding of the in vivo metabolism of flumazenil and accelerate radiopharmaceutical inspection and registration. The main goal of this study was to investigate the use of reversed-phase high performance liquid chromatography (PR-HPLC), coupled with electrospray ionization triple-quadrupole tandem mass spectrometry (ESI-QqQ MS), to identify flumazenil and its metabolites in the hepatic matrix. Carrier-free nucleophilic fluorination with an automatic synthesizer for [18F]flumazenil, combined with nano-positron emission tomography (NanoPET)/computed tomography (CT) imaging, was used to predict the biodistribution in normal rats. The study showed that 50% of the flumazenil was biotransformed by the rat liver homogenate in 60 min, whereas one metabolite (M1) was a methyl transesterification product of flumazenil. In the rat liver microsomal system, two metabolites were identified (M2 and M3), as their carboxylic acid and hydroxylated ethyl ester forms between 10 and 120 min, respectively. A total of 10-30 min post-injection of [18F]flumazenil showed an immediate decreased in the distribution ratio observed in the plasma. Nevertheless, a higher ratio of the complete [18F]flumazenil compound could be used for subsequent animal studies. [18F] According to in vivo nanoPET/CT imaging and ex vivo biodistribution assays, flumazenil also showed significant effects on GABAA receptor availability in the amygdala, prefrontal cortex, cortex, and hippocampus in the rat brain, indicating the formation of metabolites. We reported the completion of the biotransformation of flumazenil by the hepatic system, as well as [18F]flumazenil's potential as an ideal ligand and PET agent for the determination of the GABAA/BZR complex for multiplex neurological syndromes at the clinical stage.

2.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36986516

RESUMO

Clinical studies have demonstrated that the γ-aminobutyric acid type A (GABAA) receptor complex plays a central role in the modulation of anxiety. Conditioned fear and anxiety-like behaviors have many similarities at the neuroanatomical and pharmacological levels. The radioactive GABA/BZR receptor antagonist, fluorine-18-labeled flumazenil, [18F]flumazenil, behaves as a potential PET imaging agent for the evaluation of cortical damage of the brain in stroke, alcoholism, and for Alzheimer disease investigation. The main goal of our study was to investigate a fully automated nucleophilic fluorination system, with solid extraction purification, developed to replace traditional preparation methods, and to detect underlying expressions of contextual fear and characterize the distribution of GABAA receptors in fear-conditioned rats by [18F]flumazenil. A carrier-free nucleophilic fluorination method using an automatic synthesizer with direct labeling of a nitro-flumazenil precursor was implemented. The semi-preparative high-performance liquid chromatography (HPLC) purification method (RCY = 15-20%) was applied to obtain high purity [18F]flumazenil. Nano-positron emission tomography (NanoPET)/computed tomography (CT) imaging and ex vivo autoradiography were used to analyze the fear conditioning of rats trained with 1-10 tone-foot-shock pairings. The anxiety rats had a significantly lower cerebral accumulation (in the amygdala, prefrontal cortex, cortex, and hippocampus) of fear conditioning. Our rat autoradiography results also supported the findings of PET imaging. Key findings were obtained by developing straightforward labeling and purification procedures that can be easily adapted to commercially available modules for the high radiochemical purity of [18F]flumazenil. The use of an automatic synthesizer with semi-preparative HPLC purification would be a suitable reference method for new drug studies of GABAA/BZR receptors in the future.

3.
Int J Mol Sci ; 22(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064291

RESUMO

The Arg-Gly-Asp (RGD) peptide shows a high affinity for αvß3 integrin, which is overexpressed in new tumor blood vessels and many types of tumor cells. The radiolabeled RGD peptide has been studied for cancer imaging and radionuclide therapy. We have developed a long-term tumor-targeting peptide DOTA-EB-cRGDfK, which combines a DOTA chelator, a truncated Evans blue dye (EB), a modified linker, and cRGDfK peptide. The aim of this study was to evaluate the potential of indium-111(111In) radiolabeled DOTA-EB-cRGDfK in αvß3 integrin-expressing tumors. The human glioblastoma cell line U-87 MG was used to determine the in vitro binding affinity of the radiolabeled peptide. The in vivo distribution of radiolabeled peptides in U-87 MG xenografts was investigated by biodistribution, nanoSPECT/CT, pharmacokinetic and excretion studies. The in vitro competition assay showed that 111In-DOTA-EB-cRGDfK had a significant binding affinity to U-87 MG cancer cells (IC50 = 71.7 nM). NanoSPECT/CT imaging showed 111In-DOTA-EB-cRGDfK has higher tumor uptake than control peptides (111In-DOTA-cRGDfK and 111In-DOTA-EB), and there is still a clear signal until 72 h after injection. The biodistribution results showed significant tumor accumulation (27.1 ± 2.7% ID/g) and the tumor to non-tumor ratio was 22.85 at 24 h after injection. In addition, the pharmacokinetics results indicated that the 111In-DOTA-EB-cRGDfK peptide has a long-term half-life (T1/2λz = 77.3 h) and that the calculated absorbed dose was safe for humans. We demonstrated that radiolabeled DOTA-EB-cRGDfK may be a promising agent for glioblastoma tumor imaging and has the potential as a theranostic radiopharmaceutical.


Assuntos
Quelantes/metabolismo , Glioblastoma/metabolismo , Oligopeptídeos/metabolismo , Animais , Linhagem Celular Tumoral , Compostos Heterocíclicos com 1 Anel/metabolismo , Xenoenxertos/metabolismo , Humanos , Radioisótopos de Índio/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Imagem Molecular/métodos , Peptídeos Cíclicos/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Ratos , Distribuição Tecidual
4.
EJNMMI Res ; 9(1): 46, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31119414

RESUMO

BACKGROUND: Liposomes are drug nano-carriers that are capable of targeting therapeutics to tumor sites because of enhanced permeability retention (EPR). In several preclinical studies with various tumor-bearing mice models, 188Re-liposome that has been developed by the Institute of Nuclear Energy Research (INER) demonstrates favorable in vivo tumor targeting, biodistribution, pharmacokinetics, and dosimetry. It inhibits the growth of tumors, increased survival, demonstrates good synergistic combination, and was safe to use. This study conducts a phase 0 low-radioactivity clinical trial of nano-targeted radiotherapeutics 188Re-liposome to evaluate the effectiveness with which it targets tumors and the pharmacokinetics, biodistribution, dosimetry, and its safety in use. Twelve patients with metastatic cancers are studied in this trial. Serial whole-body scans and SPECT/CT are taken at 1, 4, 8, 24, 48, and 72 h after intravenous injection of 111 MBq of 188Re-liposome. The effectiveness with which tumors are targeted, the pharmacokinetics, biodistribution, dosimetry, and safety are evaluated using the VelocityAI and OLINDA/EXM software. Blood samples are collected at different time points for a pharmacokinetics study and a safety evaluation that involves monitoring changes in liver, renal, and hematological functions. RESULTS: The T½z for 188Re-liposome in blood and plasma are 36.73 ± 14.00 h and 52.02 ± 45.21 h, respectively. The doses of radiation that are absorbed to vital organs such as the liver, spleen, lung, kidney, and bone marrow are 0.92 ± 0.35, 1.38 ± 1.81, 0.58 ± 0.28, 0.32 ± 0.09, and 0.06 ± 0.01 mGy/MBq, respectively, which is far less than the reference maximum tolerance dose after injection of 188Re-liposome. 188Re-liposome is absorbed by metastatic tumor lesions and the normal reticuloendothelial (RES) system. Certain patients exhibit a therapeutic response. CONCLUSION: This phase 0 exploratory IND study shows that nanocarrier 188Re-liposome achieves favorable tumor accumulation and tumor to normal organ uptake ratios for a subset of cancer patients. The clinical pharmacokinetic, biodistribution, and dosimetry results justify a further dose-escalating phase 1 clinical trial. TRIAL REGISTRATION: Taiwan FDA MA1101G0 (Jan 31, 2012).

5.
Nucl Med Biol ; 39(6): 826-32, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22464847

RESUMO

PURPOSE: [(123)I]Epidepride is a radio-tracer with very high affinity for dopamine D(2)/D(3) receptors in brain. The importance of alteration in dopamine D(2)/D(3) receptor binding condition has been wildly verified in schizophrenia. In the present study we set up a rat schizophrenia model by chronic injection of a non-competitive NMDA receptor antagonist, MK-801, to examine if [(123)I]epidepride could be used to evaluate the alterations of dopamine D(2)/D(3) receptor binding condition in specific brain regions. METHOD: Rats were given repeated injection of MK-801 (dissolved in saline, 0.3mg/kg) or saline for 1month. Afterwards, total distance traveled (cm) and social interaction changes were recorded. Radiochemical purity of [(123)I]epidepride was analyzed by Radio-Thin-Layer Chromatography (chloroform: methanol, 9:1, v/v) and [(123)I]epidepride neuroimages were obtained by ex vivo autoradiography and small animal SPECT/CT. Data obtained were then analyzed to determine the changes of specific binding ratio. RESULT: Chronic MK-801 treatment for a month caused significantly increased local motor activity and induced an inhibition of social interaction. As shown in [(123)I]epidepride ex vivo autoradiographs, MK-801 induced a decrease of specific binding ratio in the striatum (24.01%), hypothalamus (35.43%), midbrain (41.73%) and substantia nigra (37.93%). In addition, [(123)I]epidepride small animal SPECT/CT neuroimaging was performed in the striatum and midbrain. There were statistically significant decreases in specific binding ratio in both the striatum (P<.01) and midbrain (P<.05) between the saline and MK-801 group. CONCLUSION: These results suggest that [(123)I]epidepride is a useful radio-tracer to reveal the alterations of dopamine D(2)/D(3) receptor binding in a rat schizophrenia model and is also helpful to evaluate therapeutic effects of schizophrenia in the future.


Assuntos
Benzamidas , Maleato de Dizocilpina/farmacologia , Neuroimagem/métodos , Pirrolidinas , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Esquizofrenia/diagnóstico , Esquizofrenia/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Doença Crônica , Modelos Animais de Doenças , Radioisótopos do Iodo , Masculino , Imagem Multimodal , Neostriado/diagnóstico por imagem , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Tomografia por Emissão de Pósitrons , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/análise , Receptores de Dopamina D3/análise , Esquizofrenia/induzido quimicamente , Esquizofrenia/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA