Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 31(9): 2796-2810, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37244253

RESUMO

Patients with mutations in the TMPRSS3 gene suffer from recessive deafness DFNB8/DFNB10. For these patients, cochlear implantation is the only treatment option. Poor cochlear implantation outcomes are seen in some patients. To develop biological treatment for TMPRSS3 patients, we generated a knockin mouse model with a frequent human DFNB8 TMPRSS3 mutation. The Tmprss3A306T/A306T homozygous mice display delayed onset progressive hearing loss similar to human DFNB8 patients. Using AAV2 as a vector to carry a human TMPRSS3 gene, AAV2-hTMPRSS3 injection in the adult knockin mouse inner ear results in TMPRSS3 expression in the hair cells and the spiral ganglion neurons. A single AAV2-hTMPRSS3 injection in Tmprss3A306T/A306T mice of an average age of 18.5 months leads to sustained rescue of the auditory function to a level similar to wild-type mice. AAV2-hTMPRSS3 delivery rescues the hair cells and the spiral ganglions neurons. This study demonstrates successful gene therapy in an aged mouse model of human genetic deafness. It lays the foundation to develop AAV2-hTMPRSS3 gene therapy to treat DFNB8 patients, as a standalone therapy or in combination with cochlear implantation.


Assuntos
Surdez , Serina Endopeptidases , Adulto , Humanos , Camundongos , Animais , Lactente , Serina Endopeptidases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Audição , Surdez/genética , Surdez/terapia , Terapia Genética , Proteínas de Neoplasias/genética
2.
bioRxiv ; 2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36865298

RESUMO

Patients with mutations in the TMPRSS3 gene suffer from recessive deafness DFNB8/DFNB10 for whom cochlear implantation is the only treatment option. Poor cochlear implantation outcomes are seen in some patients. To develop biological treatment for TMPRSS3 patients, we generated a knock-in mouse model with a frequent human DFNB8 TMPRSS3 mutation. The Tmprss3 A306T/A306T homozygous mice display delayed onset progressive hearing loss similar to human DFNB8 patients. Using AAV2 as a vector to carry a human TMPRSS3 gene, AAV2-h TMPRSS3 injection in the adult knock-in mouse inner ears results in TMPRSS3 expression in the hair cells and the spiral ganglion neurons. A single AAV2-h TMPRSS3 injection in aged Tmprss3 A306T/A306T mice leads to sustained rescue of the auditory function, to a level similar to the wildtype mice. AAV2-h TMPRSS3 delivery rescues the hair cells and the spiral ganglions. This is the first study to demonstrate successful gene therapy in an aged mouse model of human genetic deafness. This study lays the foundation to develop AAV2-h TMPRSS3 gene therapy to treat DFNB8 patients, as a standalone therapy or in combination with cochlear implantation.

3.
Genes (Basel) ; 12(6)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070435

RESUMO

Usher syndrome (USH) is the leading cause of inherited combined hearing and vision loss. As an autosomal recessive trait, it affects 15,000 people in the United States alone and is responsible for ~21% of inherited blindness and 3 to 6% of early childhood deafness. Approximately 2/3 of the patients with Usher syndrome suffer from USH2, of whom 85% have mutations in the USH2A gene. Patients affected by USH2 suffer from congenital bilateral progressive sensorineural hearing loss and retinitis pigmentosa which leads to progressive loss of vision. To study the molecular mechanisms of this disease and develop a gene therapy strategy, we generated human induced pluripotent stem cells (iPSCs) from peripheral blood mononuclear cells (PBMCs) obtained from a patient carrying compound heterozygous variants of USH2A c.2299delG and c.1256G>T and the patient's healthy sibling. The pluripotency and stability were confirmed by pluripotency cell specific marker expression and molecular karyotyping. Subsequent CRISPR/Cas9 genome editing using a homology repair template was used to successfully correct the USH2A c.2299delG mutation back to normal c.2299G in the generated patient iPSCs to create an isogenic pair of lines. Importantly, this manuscript describes the first use of the recombinant Cas9 and synthetic gRNA ribonucleoprotein complex approach to correct the USH2A c.2299delG without additional genetic effects in patient-derived iPSCs, an approach that is amenable for therapeutic genome editing. This work lays a solid foundation for future ex vivo and in vivo gene therapy investigations and these patient's iPSCs also provide an unlimited resource for disease modeling and mechanistic studies.


Assuntos
Proteínas da Matriz Extracelular/genética , Edição de Genes/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cultura Primária de Células/métodos , Síndromes de Usher/genética , Sistemas CRISPR-Cas , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Feminino , Deleção de Genes , Humanos , Síndromes de Usher/metabolismo , Síndromes de Usher/patologia
4.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34050020

RESUMO

Genes that are primarily expressed in cochlear glia-like supporting cells (GLSs) have not been clearly associated with progressive deafness. Herein, we present a deafness locus mapped to chromosome 3p25.1 and an auditory neuropathy spectrum disorder (ANSD) gene, TMEM43, mainly expressed in GLSs. We identify p.(Arg372Ter) of TMEM43 by linkage analysis and exome sequencing in two large Asian families segregating ANSD, which is characterized by inability to discriminate speech despite preserved sensitivity to sound. The knock-in mouse with the p.(Arg372Ter) variant recapitulates a progressive hearing loss with histological abnormalities in GLSs. Mechanistically, TMEM43 interacts with the Connexin26 and Connexin30 gap junction channels, disrupting the passive conductance current in GLSs in a dominant-negative fashion when the p.(Arg372Ter) variant is introduced. Based on these mechanistic insights, cochlear implant was performed on three subjects, and speech discrimination was successfully restored. Our study highlights a pathological role of cochlear GLSs by identifying a deafness gene and its causal relationship with ANSD.


Assuntos
Códon sem Sentido , Conexinas/metabolismo , Genes Dominantes , Perda Auditiva Central/genética , Proteínas de Membrana/genética , Animais , Implante Coclear , Feminino , Perda Auditiva Central/metabolismo , Perda Auditiva Central/fisiopatologia , Perda Auditiva Central/cirurgia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linhagem , Percepção da Fala
5.
Stem Cell Res ; 49: 102017, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33038743

RESUMO

UMi028-A-1 hiPSC line contains a CRISPR/Cas9-induced heterozygous, hearing loss-associated variant (V60L (GTA > TTA)) in the Purinergic Receptor P2X2 (P2RX2) gene. This line, derived from an unaffected male iPSC line, has been successfully characterized for its cellular and genetic properties. The c.178G > T variant in P2RX2 is associated with non-syndromic, dominant, progressive hearing loss. Once differentiated into inner ear cell types, UMi028-A-1 will serve as a resource for understanding the molecular mechanisms underlying hearing loss and serve as a potential platform for testing therapeutic approaches to restore inner ear function.


Assuntos
Sistemas CRISPR-Cas , Perda Auditiva , Sistemas CRISPR-Cas/genética , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Perda Auditiva/genética , Heterozigoto , Humanos , Masculino , Receptores Purinérgicos P2X2
6.
Artigo em Inglês | MEDLINE | ID: mdl-32426338

RESUMO

The emerging field of theranostics for advanced healthcare has raised the demand for effective and safe delivery systems consisting of therapeutics and diagnostics agents in a single monarchy. This requires the development of multi-functional bio-polymeric systems for efficient image-guided therapeutics. This study reports the development of size-controlled (micro-to-nano) auto-fluorescent biopolymeric hydrogel particles of chitosan and hydroxyethyl cellulose (HEC) synthesized using water-in-oil emulsion polymerization technique. Sustainable resource linseed oil-based polyol is introduced as an element of hydrophobicity with an aim to facilitate their ability to traverse the blood-brain barrier (BBB). These nanogels are demonstrated to have salient features such as biocompatibility, stability, high cellular uptake by a variety of host cells, and ability to transmigrate across an in vitro BBB model. Interestingly, these unique nanogel particles exhibited auto-fluorescence at a wide range of wavelengths 450-780 nm on excitation at 405 nm whereas excitation at 710 nm gives emission at 810 nm. In conclusion, this study proposes the developed bio-polymeric fluorescent micro- and nano- gels as a potential theranostic tool for central nervous system (CNS) drug delivery and image-guided therapy.

7.
Crit Rev Biomed Eng ; 47(6): 495-505, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32421974

RESUMO

Liposomes, one of the most promising drug delivery carriers, have been extensively studied for the treatment of various diseases and have made their way to the market. Magnetic nanoparticles have been attracting great interest for diagnostic and therapeutic applications due to their unique magnetic properties. An integration of liposomes and magnetic nanoparticles gives great potential to the field of smart drug delivery systems, including magnetically guided drug delivery, image-guided drug delivery, and externally triggered controlled drug release using hyperthermia or alternating magnetic fields. In this review, we discuss the recent development of magnetoliposomes for controlled-release drug delivery systems and their potential.


Assuntos
Preparações de Ação Retardada , Lipossomos , Nanopartículas de Magnetita , Células HeLa , Humanos
8.
Eur J Med Chem ; 156: 79-92, 2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-30006176

RESUMO

A dose responsive quantitative high throughput screen (qHTS) of >350,000 compounds against a human relaxin/insulin-like family peptide receptor (RXFP1) transfected HEK293 cell line identified 2-acetamido-N-phenylbenzamides 1 and 3 with modest agonist activity. An extensive structure-activity study has been undertaken to optimize the potency, efficacy, and physical properties of the series, resulting in the identification of compound 65 (ML-290), which has excellent in vivo PK properties with high levels of systemic exposure. This series, exemplified by 65, has produced first-in-class small-molecule agonists of RXFP1 and is a potent activator of anti-fibrotic genes.


Assuntos
Benzamidas/química , Benzamidas/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Receptores de Peptídeos/agonistas , Transcriptoma/efeitos dos fármacos , Animais , Benzamidas/farmacocinética , Linhagem Celular , Células HEK293 , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL , Modelos Moleculares , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacocinética , Bibliotecas de Moléculas Pequenas/farmacologia
9.
Nanoscale ; 10(1): 184-194, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29210401

RESUMO

Image-guided drug delivery is an emerging strategy in the field of nanomedicine. The addition of image guidance to a traditional drug delivery system is expected to achieve highly efficient treatment by tracking the drug carriers in the body and monitoring their effective accumulation in the targeted tissues. In this study, we developed multifunctional magneto-plasmonic liposomes (MPLs), a hybrid system combining liposomes and magneto-plasmonic nanoparticles for a triple-modality image-guided drug delivery. Tenofovir disoproxil fumarate, an antiretroviral drug used to treat human immunodeficiency virus type 1 (HIV-1), was encapsulated into the MPLs to enable the treatment in the brain microenvironment, which is inaccessible to most of the drugs. We found strong negative and positive contrasts originating from the magnetic core of MPLs in magnetic resonance imaging (MRI) and magnetic particle imaging (MPI), respectively. The gold shell of MPLs showed bright positive contrast in X-ray computed tomography (CT). MPLs achieved enhanced transmigration across an in vitro blood-brain barrier (BBB) model by magnetic targeting. Moreover, MPLs provided desired therapeutic effects against HIV infected microglia cells.


Assuntos
Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Infecções por HIV/diagnóstico por imagem , Infecções por HIV/tratamento farmacológico , Lipossomos , Antirretrovirais/administração & dosagem , Barreira Hematoencefálica , Linhagem Celular , Ouro , Humanos , Magnetismo , Nanopartículas Metálicas , Microglia/efeitos dos fármacos , Microglia/virologia , Imagem Multimodal , Nanomedicina , Tenofovir/administração & dosagem
10.
Biol Reprod ; 97(4): 586-597, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29025010

RESUMO

Glyceraldehyde 3-phosphate dehydrogenase-S (GAPDHS) and phosphoglycerate kinase 2 (PGK2), two isozymes restricted to the male germline, catalyze successive steps in the glycolytic pathway in mammalian sperm. Although gene targeting of each isozyme demonstrated that glycolysis is required for normal sperm motility and male fertility, the phenotype of mice lacking GAPDHS is more severe than that of mice lacking PGK2. This study examined sperm function, signaling pathways, and metabolism to investigate factors that contribute to the phenotypic differences between these knockout models. Sperm from the two knockouts exhibited comparable deficits in zona binding, in vitro fertilization with or without zona drilling, and capacitation-dependent tyrosine phosphorylation. In contrast, signaling and metabolic differences were apparent prior to capacitation. Phosphorylation of sperm protein phosphatase 1, which has been associated with the acquisition of motile capacity during epididymal maturation, was deficient only in GAPDHS-null sperm. Carnitine, choline, phosphocholine, and taurine were elevated in sperm from both knockouts immediately after collection from the epididymis. However, only carnitine levels in PGK2-null sperm were significantly different from wild-type sperm, while all four metabolites were significantly higher in GAPDHS-null sperm. We confirmed that glycolysis is required for robust hyperactivation, but found that the motility of PGK2-null sperm improved to levels comparable to wild-type sperm with pyruvate as the sole metabolic substrate. This nonglycolysable substrate did not improve progressive motility in GAPDHS-null sperm. These results identify multiple signaling and metabolic defects that are likely contributors to male infertility and the absence of progressive sperm motility seen in mice lacking GAPDHS.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Isoenzimas/metabolismo , Fosfoglicerato Quinase/metabolismo , Espermatozoides/enzimologia , Espermatozoides/metabolismo , Animais , Regulação Enzimológica da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Isoenzimas/genética , Masculino , Camundongos , Camundongos Knockout , Fosfoglicerato Quinase/genética , Fosforilação , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Ácido Pirúvico
11.
Sci Rep ; 7(1): 5955, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729655

RESUMO

HIV/AIDS remains a major health threat despite significant advances in the prevention and treatment of HIV infection. The major reason is the inability of existing treatments to eradicate the multiple HIV reservoirs in the human body, including astrocytes in the human brain. CRISPR/Cas9 system is an emerging gene-editing technique with the potential to eliminate or disrupt HIV provirus in HIV reservoir cells, which may lead to a complete cure of HIV/AIDS. The key components of CRISPR/Cas9 are guide RNAs (gRNAs) which determine specific sequence targeting of DNAs. This study established a novel, simple and quick screening method to identify gRNA candidates for targeting HIV provirus in astrocytes. Briefly, stable astrocytes clones with an integrated fluorescent HIV reporter and Cas9 expression gene were generated. Various gRNAs were screened for their efficiencies against HIV provirus in these cells. Moreover, these gRNAs and Cas9 protein were successfully tested on HIV latent astrocytes without Cas9 expression to mimic clinical conditions. HIV provirus gene-editing were confirmed by cell genomic DNA PCR and fluorescent marker expression analysis. In the future, the established transgenic cells can be used for other gene-editing studies and is well-suited for high-throughput screen application.


Assuntos
Astrócitos/virologia , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Terapia Genética , Infecções por HIV/terapia , HIV-1/genética , Provírus/genética , RNA Guia de Cinetoplastídeos/metabolismo , Linhagem Celular Tumoral , Células Clonais , Edição de Genes , Células HEK293 , Humanos , Modelos Biológicos , Latência Viral
12.
Sci Rep ; 6: 25309, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27143580

RESUMO

Least component-based delivery of drug-tagged-nanocarriers across blood-brain-barriers (BBB) will allow site-specific and on-demand release of therapeutics to prevent CNS diseases. We developed a non-invasive magnetically guided delivery of magneto-electric nanocarriers (MENCs), ~20 nm, 10 mg/kg, across BBB in C57Bl/J mice. Delivered MENCs were uniformly distributed inside the brain, and were non-toxic to brain and other major organs, such as kidney, lung, liver, and spleen, and did not affect hepatic, kidney and neurobehavioral functioning.


Assuntos
Sistema Nervoso Central/química , Portadores de Fármacos/efeitos adversos , Portadores de Fármacos/farmacocinética , Campos Magnéticos , Nanopartículas Metálicas/efeitos adversos , Animais , Portadores de Fármacos/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Camundongos Endogâmicos C57BL
13.
Biochemistry ; 55(12): 1772-83, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26866459

RESUMO

The GPCR relaxin family peptide receptor 1 (RXFP1) mediates the action of relaxin peptide hormone, including its tissue remodeling and antifibrotic effects. The peptide has a short half-life in plasma, limiting its therapeutic utility. However, small-molecule agonists of human RXFP1 can overcome this limitation and may provide a useful therapeutic approach, especially for chronic diseases such as heart failure and fibrosis. The first small-molecule agonists of RXFP1 were recently identified from a high-throughput screening, using a homogeneous cell-based cAMP assay. Optimization of the hit compounds resulted in a series of highly potent and RXFP1 selective agonists with low cytotoxicity, and excellent in vitro ADME and pharmacokinetic properties. Here, we undertook extensive site-directed mutagenesis studies in combination with computational modeling analysis to probe the molecular basis of the small-molecule binding to RXFP1. The results showed that the agonists bind to an allosteric site of RXFP1 in a manner that closely interacts with the seventh transmembrane domain (TM7) and the third extracellular loop (ECL3). Several residues were determined to play an important role in the agonist binding and receptor activation, including a hydrophobic region at TM7 consisting of W664, F668, and L670. The G659/T660 motif within ECL3 is crucial to the observed species selectivity of the agonists for RXFP1. The receptor binding and activation effects by the small molecule ML290 were compared with the cognate ligand, relaxin, providing valuable insights on the structural basis and molecular mechanism of receptor activation and selectivity for RXFP1.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/agonistas , Receptores de Peptídeos/metabolismo , Relaxina/metabolismo , Sequência de Aminoácidos , Animais , Células HEK293 , Humanos , Macaca , Camundongos , Dados de Sequência Molecular , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Receptores Acoplados a Proteínas G/química , Receptores de Peptídeos/química , Relaxina/farmacologia , Suínos
14.
Artigo em Inglês | MEDLINE | ID: mdl-26347712

RESUMO

Relaxin peptide (RLN), which signals through the relaxin family peptide 1 (RXFP1) GPCR receptor, has shown therapeutic effects in an acute heart failure clinical trial. We have identified a small-molecule agonist of human RXFP1, ML290; however, it does not activate the mouse receptor. To find a suitable animal model for ML290 testing and to gain mechanistic insights into the interaction of various ligands with RXFP1, we have cloned rhesus macaque, pig, rabbit, and guinea pig RXFP1s and analyzed their activation by RLN and ML290. HEK293T cells expressing macaque or pig RXFP1 responded to relaxin and ML290 treatment as measured by an increase of cAMP production. Guinea pig RXFP1 responded to relaxin but had very low response to ML290 treatment only at highest concentrations used. The rabbit RXFP1 amino acid sequence was the most divergent, with a number of unique substitutions within the ectodomain and the seven-transmembrane domain (7TM). Two splice variants of rabbit RXFP1 derived through alternative splicing of the fourth exon were identified. In contrast to the other species, rabbit RXFP1s were activated by ML290, but not with human, pig, mouse, or rabbit RLNs. Using FLAG-tagged constructs, we have shown that both rabbit RXFP1 variants are expressed on the cell surface. No binding of human Eu-labeled RLN to rabbit RXFP1 was detected, suggesting that in this species, RXFP1 might be non-functional. We used chimeric rabbit-human and guinea pig-human constructs to identify regions important for RLN or ML290 receptor activation. Chimeras with the human ectodomain and rabbit 7TM domain were activated by RLN, whereas substitution of part of the guinea pig 7TM domain with the human sequence only partially restored ML290 activation, confirming the allosteric mode of action for the two ligands. Our data demonstrate that macaque and pig models can be used for ML290 testing.

15.
Front Microbiol ; 6: 749, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26284039

RESUMO

BACKGROUND: HIV-associated neurological disorder (HAND) has long been recognized as a consequence of human immunodeficiency virus (HIV) infection in the brain. The pathology of HAND gets more complicated with the recreational drug use such as cocaine. Recent studies have suggested multiple genetic influences involved in the pathology of addiction and HAND but only a fraction of the entire genetic risk has been investigated so far. In this regard, role of DJ1 protein (a gene linked to autosomal recessive early-onset Parkinson's disease) in regulating dopamine (DA) transmission and reactive oxygen species (ROS) production in neuronal cells will be worth investigating in HIV-1 and cocaine exposed microenvironment. Being a very abundant protein in the brain, DJ1 could serve as a potential marker for early detection of HIV-1 and/or cocaine related neurological disorder. METHODS: In vitro analysis was done to observe the effect of HIV-1 and/or cocaine on DJ1 protein expression in neuroblastoma cells (SK-N-MC). Gene and protein expression analysis of DJ1 was done on the HIV infected and/or cocaine treated SK-N-MC and compared to untreated cells using real time PCR, Western Blot and flow cytometry. Effect of DJ1 dysregulation on oxidative stress was analyzed by measuring ROS production in these cells. RESULTS: Gene expression and protein analysis indicated that there was a significant decrease in DJ1 expression in SK-N-MC chronically exposed to HIV-1 and/or cocaine which is inversely proportional to ROS production. CONCLUSION: This is the first study to establish that DJ1 expression level in the neuronal cells significantly decreased in presence of HIV-1 and/or cocaine indicating oxidative stress level of DA neurons.

16.
Biol Reprod ; 92(4): 91, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25715795

RESUMO

Relaxin hormone secreted into the circulation during pregnancy was discovered through its effects on pubic symphysis relaxation and parturition. Genetic inactivation of the relaxin gene or its cognate relaxin family peptide receptor 1 (RXFP1) in mice caused failure of parturition and mammary nipple enlargement, as well as increased collagen fiber density in the cervix and vagina. However, the relaxin effect on discrete cells and tissues has yet to be determined. Using transgenic mice with a knockin LacZ reporter in the Rxfp1 allele, we showed strong expression of this gene in vaginal and cervical stromal cells, as well as pubic ligament cells. We produced a floxed Rxfp1 allele that was used in combination with the Tagln-cre transgene to generate mice with a smooth muscle-specific gene knockout. In pregnant females, the ROSA26 reporter activated by Tagln-cre was detected in smooth muscle cells of the cervix, vagina, uterine artery, and in cells of the pubic symphysis. In late pregnant females with conditional gene ablation, the length of pubic symphysis was significantly reduced compared with wild-type or heterozygous Rxfp1(+/-) females. Denser collagen content was revealed by Masson trichrome staining in reproductive tract organs, uterine artery, and pubic symphysis. The cervical and vaginal epithelium was less developed than in heterozygous or wild-type females, although nipple size was normal and the dams were able to nurse their pups. In summary, our data indicate that relaxin/RXFP1 signaling in smooth muscle cells is important for normal collagen turnover and relaxation of the pubic symphysis during pregnancy.


Assuntos
Genitália Feminina/fisiologia , Músculo Liso/citologia , Receptores Acoplados a Proteínas G/genética , Alelos , Animais , Linhagem da Célula , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genitália Feminina/citologia , Genitália Feminina/patologia , Óperon Lac , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Parto/genética , Gravidez , Sínfise Pubiana/patologia , Reprodução/fisiologia , Transgenes/genética , beta-Galactosidase/metabolismo
17.
Genesis ; 52(4): 328-32, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24443144

RESUMO

As a dual function protein, ß-catenin affects both cell adhesion and mediates canonical Wnt/ß-catenin cell signaling. ß-Catenin is prominently expressed in somatic Sertoli cells in the testis and postmeiotic germ cells, suggesting an additional role in spermatogenesis. It was reported previously that Cre/loxP-mediated conditional inactivation of the ß-catenin gene (Ctnnb1) in male gonads using a protamine promoter-driven Cre transgene (Prm-cre) resulted in partial infertility, reduced sperm count, and abnormal spermatogenesis. In this report, we demonstrated that the conditional deletion of Ctnnb1 using a germ cell specific Cre transgene (Stra8-icre) had no effect on male fertility. We have shown that the Stra8-icre transgene was highly efficient in generating deletion in early pre-meiotic and post-meiotic cells. No differences in anatomical or histological presentation were found in the mutant testis, the production of viable sperm was similar, and no abnormalities in DNA sperm content were detected. We concluded that ß-catenin is fully dispensable in germ cells for spermatogenesis. The conflicting results from the earlier study may have been due to off-target expression of Prm-cre in testicular somatic cells. In future studies, the analysis of conditional mutants using several Cre-transgenes should be encouraged to reduce potential errors.


Assuntos
Fertilidade , Espermatozoides/metabolismo , beta Catenina/genética , Animais , Animais não Endogâmicos , Epididimo/anatomia & histologia , Feminino , Deleção de Genes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tamanho do Órgão , Glândulas Seminais/anatomia & histologia , Espermatogênese , Testículo/anatomia & histologia , Testículo/citologia , beta Catenina/metabolismo
18.
PLoS One ; 8(7): e71213, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936265

RESUMO

NOTCH1 is a member of the NOTCH receptor family, a group of single-pass trans-membrane receptors. NOTCH signaling is highly conserved in evolution and mediates communication between adjacent cells. NOTCH receptors have been implicated in cell fate determination, as well as maintenance and differentiation of stem cells. In the mammalian testis expression of NOTCH1 in somatic and germ cells has been demonstrated, however its role in spermatogenesis was not clear. To study the significance of NOTCH1 in germ cells, we applied a cre/loxP approach in mice to induce NOTCH1 gain- or loss-of function specifically in male germ cells. Using a Stra8-icre transgene we produced mice with conditional activation of the NOTCH1 intracellular domain (NICD) in germ cells. Spermatogenesis in these mutants was progressively affected with age, resulting in decreased testis weight and sperm count. Analysis of downstream target genes of NOTCH1 signaling showed an increased expression of Hes5, with a reduction of the spermatogonial differentiation marker, Neurog3 expression in the mutant testis. Apoptosis was significantly increased in mouse germ cells with the corresponding elevation of pro-apoptotic Trp53 and Trp63 genes' expression. We also showed that the conditional germ cell-specific ablation of Notch1 had no effect on spermatogenesis or male fertility. Our data suggest the importance of NOTCH signaling regulation in male germ cells for their survival and differentiation.


Assuntos
Células Germinativas/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Espermatogênese/genética , Animais , Apoptose/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fertilidade/genética , Deleção de Genes , Expressão Gênica , Regulação da Expressão Gênica , Ordem dos Genes , Vetores Genéticos/genética , Masculino , Camundongos , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Testículo/citologia , Testículo/metabolismo
19.
Nat Commun ; 4: 1953, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23764525

RESUMO

The anti-fibrotic, vasodilatory and pro-angiogenic therapeutic properties of recombinant relaxin peptide hormone have been investigated in several diseases, and recent clinical trial data has shown benefit in treating acute heart failure. However, the remodelling capacity of these peptide hormones is difficult to study in chronic settings because of their short half-life and the need for intravenous administration. Here we present the first small-molecule series of human relaxin/insulin-like family peptide receptor 1 agonists. These molecules display similar efficacy as the natural hormone in several functional assays. Mutagenesis studies indicate that the small molecules activate relaxin receptor through an allosteric site. These compounds have excellent physical and in vivo pharmacokinetic properties to support further investigation of relaxin biology and animal efficacy studies of the therapeutic benefits of relaxin/insulin-like family peptide receptor 1 activation.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Receptores Acoplados a Proteínas G/agonistas , Receptores de Peptídeos/agonistas , Bibliotecas de Moléculas Pequenas/farmacologia , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , AMP Cíclico/metabolismo , Estabilidade de Medicamentos , Impedância Elétrica , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Ligação de Hidrogênio , Camundongos , Conformação Molecular , Dados de Sequência Molecular , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/química , Receptores de Peptídeos/metabolismo , Relaxina/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacocinética , Relação Estrutura-Atividade , Transfecção , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Ital J Anat Embryol ; 118(1 Suppl): 32-3, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24640567

RESUMO

Global ablation of INSL3 hormone or its receptor RXFP2 in male mice results in cryptorchidism and infertility. Using novel LacZ knock-in Rxfp2 allele we demonstrated a strong expression of this gene in postmeiotic germ cells. RXFP2 was expressed in embryonic and neonatal gubernaculum. No RXFP2 expression was detected in cremaster muscles in adult mice. We produced a floxed allele of Rxfp2 and then deleted this gene in male germ cells in testes located in normal scrotal position. No differences in fertility or spermatogenesis of such males were found, suggesting non-essential role of INSL3 signaling in germ cell differentiation in adult males. We have also produced shRNA transgenic mice with reduced RXFP2 expression Such males manifested various degree of uni- and bilateral cryptorchidism. Total gene expression analysis of the mutant cremasteric sacs indicated misexpression of a significant number of genes in Wnt/beta-catenin and NOTCH pathways. Conditional deletion of beta-catenin or Notch1 genes in male gubernacular ligament resulted in its abnormal development. Our data suggest that beta-catenin and NOTCH1 pathways are potential targets of INSL3 signaling during gubernacular development.


Assuntos
Insulina/metabolismo , Proteínas/metabolismo , Transdução de Sinais/fisiologia , Testículo/metabolismo , Animais , Masculino , Camundongos , Receptor Notch1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA