Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(13): 9403-9412, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488193

RESUMO

Diatomic-site catalysts (DASCs) inherit the excellent performance of single-atom catalysts (SACs) by utilizing two adjacent atomic metal species to achieve functional complementarity and synergistic effects that improve the carbon dioxide reduction reaction (CO2RR) and H2 evolution reaction (HER) kinetics. Herein, we report a method to further improve the catalytic efficiency of Pt by using Pt and Ru single atoms randomly anchored on a g-C3N4 surface, yielding partial Pt-Ru dimers. The synthesized catalyst exhibits extraordinary photocatalytic activity and stability in both the CO2RR and HER processes. In-depth experimentation, the pH-dependent chemical exchange saturation transfer (CEST) imaging nuclear magnetic resonance (NMR) method, and theoretical analyses reveal that the excellent performance is attributed to orbital coupling between the Pt atoms and the neighboring Ru atoms (mainly dxy and dxz), which decreases the orbital energy levels and weakens the bond strength with intermediates, resulting in improved CO2RR and HER performance. This study successfully applies the pH-dependent CEST imaging NMR method to catalytic reactions, and CO2 adsorption is directly observed using CEST 2D imaging maps. This work presents significant potential for a variety of catalytic reaction applications by systematically designing bimetallic dimers with higher activity and stability.

2.
Chem Commun (Camb) ; 60(35): 4652-4655, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38440802

RESUMO

The optimal ratio of reaction solutions resulted in excellent performance and product selectivity of CuO/g-C3N4 composites in the photocatalytic CO2 reduction reaction. A pH-dependent chemical exchange saturation transfer (CEST) imaging nuclear magnetic resonance (NMR) method was used to confirm that CuO modification improves the adsorption capacity of CO2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA