Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 10: 959572, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017159

RESUMO

γ-Valerolactone (GVL) is one of the most valuable compounds derived from furfural (FAL), which has been industrially produced from agricultural byproducts like corn cobs. It is extremely challenging to synthesize GVL from FAL efficiently via a one-pot cascade reaction due to the need for multiple active sites in a single pot. By focusing on the aspects of one-pot synthesis of GVL from FAL, the authors aim to shed light on the rational design and utilization of environmentally friendly bifunctional catalysts with high efficiency in this reaction. Perspectives regarding future research opportunities in bi- or multi-functional catalysts for one-pot GVL synthesis are also discussed.

2.
Front Chem ; 10: 925603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720994

RESUMO

Biomass, a globally available resource, is a promising alternative feedstock for fossil fuels, especially considering the current energy crisis and pollution. Biomass-derived diols, such as 2,5-bis(hydroxymethyl)furan, 2,5-bis(hydroxymethyl)-tetrahydrofuran, and 1,6-hexanediol, are a significant class of monomers in the polyester industry. Therefore, the catalytic conversion of biomass to valuable diols has received extensive research attention in the field of biomass conversion and is a crucial factor in determining the development of the polyester industry. 5-Hydroxymethylfurfural (HMF) is an important biomass-derived compound with a C6-furanic framework. The hydroconversion of HMF into diols has the advantages of being simple to operate, inexpensive, environmentally friendly, safe, and reliable. Therefore, in the field of diol synthesis, this method is regarded as a promising approach with significant industrialization potential. This review summarizes recent advances in diol formation, discusses the roles of catalysts in the hydroconversion process, highlights the reaction mechanisms associated with the specificities of each active center, and provides an outlook on the challenges and opportunities associated with the research on biomass-derived diol synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA