Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
medRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496537

RESUMO

Although both short and long sleep duration are associated with elevated hypertension risk, our understanding of their interplay with biological pathways governing blood pressure remains limited. To address this, we carried out genome-wide cross-population gene-by-short-sleep and long-sleep duration interaction analyses for three blood pressure traits (systolic, diastolic, and pulse pressure) in 811,405 individuals from diverse population groups. We discover 22 novel gene-sleep duration interaction loci for blood pressure, mapped to genes involved in neurological, thyroidal, bone metabolism, and hematopoietic pathways. Non-overlap between short sleep (12) and long sleep (10) interactions underscores the plausibility of distinct influences of both sleep duration extremes in cardiovascular health. With several of our loci reflecting specificity towards population background or sex, our discovery sheds light on the importance of embracing granularity when addressing heterogeneity entangled in gene-environment interactions, and in therapeutic design approaches for blood pressure management.

2.
Nat Commun ; 15(1): 2581, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519484

RESUMO

Myeloid cells are abundant and plastic immune cell subsets in the liver, to which pro-tumorigenic, inflammatory and immunosuppressive roles have been assigned in the course of tumorigenesis. Yet several aspects underlying their dynamic alterations in hepatocellular carcinoma (HCC) progression remain elusive, including the impact of distinct genetic mutations in shaping a cancer-permissive tumor microenvironment (TME). Here, in newly generated, clinically-relevant somatic female HCC mouse models, we identify cancer genetics' specific and stage-dependent alterations of the liver TME associated with distinct histopathological and malignant HCC features. Mitogen-activated protein kinase (MAPK)-activated, NrasG12D-driven tumors exhibit a mixed phenotype of prominent inflammation and immunosuppression in a T cell-excluded TME. Mechanistically, we report a NrasG12D cancer cell-driven, MEK-ERK1/2-SP1-dependent GM-CSF secretion enabling the accumulation of immunosuppressive and proinflammatory monocyte-derived Ly6Clow cells. GM-CSF blockade curbs the accumulation of these cells, reduces inflammation, induces cancer cell death and prolongs animal survival. Furthermore, GM-CSF neutralization synergizes with a vascular endothelial growth factor (VEGF) inhibitor to restrain HCC outgrowth. These findings underscore the profound alterations of the myeloid TME consequential to MAPK pathway activation intensity and the potential of GM-CSF inhibition as a myeloid-centric therapy tailored to subsets of HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Feminino , Carcinoma Hepatocelular/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral/genética , Fator A de Crescimento do Endotélio Vascular , Células Mieloides/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Imunossupressores , Inflamação/patologia
3.
Physiol Meas ; 45(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38430568

RESUMO

Objective. In previous studies, the factors affecting the accuracy of imaging photoplethysmography (iPPG) heart rate (HR) measurement have been focused on the light intensity, facial reflection angle, and motion artifacts. However, the factor of specularly reflected light has not been studied in detail. We explored the effect of specularly reflected light on the accuracy of HR estimation and proposed an estimation method for the direction of specularly radiated light.Approach. To study the HR measurement accuracy influenced by specularly reflected light, we control the component of specularly reflected light by controlling its angle. A total of 100 videos from four different reflected light angles were collected, and 25 subjects participated in the dataset collection. We extracted angles and illuminations for 71 facial regions, fitting sample points through interpolation, and selecting the angle corresponding to the maximum weight in the fitted curve as the estimated reflected angle.Main results. The experimental results show that higher specularly reflected light compromises HR estimation accuracy under the same value of light intensity. Notably, at a 60° angle, the HR accuracy (ACC) increased by 0.7%, while the signal-to-noise ratio and Pearson correlation coefficient increased by 0.8 dB and 0.035, respectively, compared to 0°. The overall root mean squared error, standard deviation, and mean error of our proposed reflected light angle estimation method on the illumination multi-angle incidence (IMAI) dataset are 1.173°, 0.978°, and 0.773°. The average Pearson value is 0.8 in the PURE rotation dataset. In addition, the average ACC of HR measurements in the PURE dataset is improved by 1.73% in our method compared to the state-of-the-art traditional methods.Significance. Our method has great potential for clinical applications, especially in bright light environments such as during surgery, to improve accuracy and monitor blood volume changes in blood vessels.


Assuntos
Fotopletismografia , Processamento de Sinais Assistido por Computador , Humanos , Frequência Cardíaca/fisiologia , Fotopletismografia/métodos , Rotação , Artefatos , Algoritmos
4.
Cancer Lett ; 585: 216638, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38266805

RESUMO

Recent studies have suggested that therapeutic upregulation of CCAAT/enhancer binding protein α (C/EBPα) prevents hepatocellular carcinoma (HCC) progression. However, the mechanisms underlying this outcome are not fully understood. In this study, we investigated the expression and functional roles of C/EBPα in human HCC, with a focus on monocytes/macrophages (Mφs). Paraffin-embedded tissues were used to visualize C/EBPα expression and analyze the prognostic value of C/EBPα+ monocytes/Mφs in HCC patients. The underlying regulatory mechanisms were examined using human monocyte-derived Mφs. The results showed that the expression of C/EBPα on monocytes/Mφs was significantly decreased in intra-tumor tissues compared to the corresponding peri-tumor tissues. C/EBPα+ monocytes/Mφs displayed well-differentiation and antitumor capacities, and the accumulation of these cells in tissue was associated with antitumor immune responses and predicted longer overall survival (OS) of HCC patients. Mechanistic studies demonstrated that C/EBPα was required for Mφ maturation and HLA-DR, CD169 and CD86 expression, which initiates antitumor cytotoxic T-cell responses; however, these effects were inhibited by monocyte autocrine IL-6- and IL-1ß-induced suppression of mTOR1 signaling. Reprogramming Mφs via the upregulation of C/EBPα may provide a novel strategy for cancer immunotherapy in patients with HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo
5.
Nat Commun ; 15(1): 450, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38200015

RESUMO

Argonaute (Ago) proteins are ubiquitous across all kingdoms of life. Eukaryotic Agos (eAgos) use small RNAs to recognize transcripts for RNA silencing in eukaryotes. In contrast, the functions of prokaryotic counterparts (pAgo) are less well known. Recently, short pAgos in conjunction with the associated TIR or Sir2 (SPARTA or SPARSA) were found to serve as antiviral systems to combat phage infections. Herein, we present the cryo-EM structures of nicotinamide adenine dinucleotide (NAD+)-bound SPARSA with and without nucleic acids at resolutions of 3.1 Å and 3.6 Å, respectively. Our results reveal that the APAZ (Analogue of PAZ) domain and the short pAgo form a featured architecture similar to the long pAgo to accommodate nucleic acids. We further identified the key residues for NAD+ binding and elucidated the structural basis for guide RNA and target DNA recognition. Using structural comparisons, molecular dynamics simulations, and biochemical experiments, we proposed a putative mechanism for NAD+ hydrolysis in which an H186 loop mediates nucleophilic attack by catalytic water molecules. Overall, our study provides mechanistic insight into the antiphage role of the SPARSA system.


Assuntos
Bacteriófagos , Ácidos Nucleicos , NAD , RNA Guia de Sistemas CRISPR-Cas , Proteínas Argonautas/genética , Bacteriófagos/genética
6.
J Sci Food Agric ; 104(4): 2477-2483, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968892

RESUMO

BACKGROUND: Wheat gluten (WG) containing gliadin and glutenin are considered the main allergens in wheat allergy as a result of their glutamine-rich peptides. Deamidation is a viable and efficient approach for protein modifications converting glutamine into glutamic acid, which may have the potential for allergenicity reduction of WG. RESULTS: Deamidation by citric acid was performed to investigate the effects on structure, allergenicity and noodle textural properties of wheat gluten (WG). WG was heated at 100 °C in 1 m citric acid to yield deamidated WG with degrees of deamidation (DD) ranging from DWG-25 (25% DD) to DWG-70 (70% DD). Fourier-transform infrared and intrinsic fluorescence spectroscopy results suggested the unfolding of WG structure during deamidation, and sodium dodecyl sulphate-polyacrylamide gel electrophoresis showed molecular weight shifts at the 35-63 kDa region, suggesting that the deamidation mainly occurred on low molecular weight glutenin subunits and γ- gliadin of the WG. An enzyme-linked immunosorbent assay of deamidated WG revealed a decrease in absorbance and immunoblotting indicated that the intensities of protein bands at 35-63 kDa decreased, which suggested that deamidation of WG might have caused a greater loss of epitopes than the generation of new epitopes caused by unfolding of WG, and thereby reduction of the immunodominant immunoglobulin E binding capacity, ultimately leading to the decrease in allergenicity. DWG-25 was used in the preparation of recombinant hypoallergenic noodles, and the hardness, elasticity, chewiness and gumminess were improved significantly by the addition of azodicarbonamide. CONCLUSION: The present shows the potential for deamidation of the WG products used in novel hypoallergenic food development. © 2023 Society of Chemical Industry.


Assuntos
Gliadina , Hipersensibilidade a Trigo , Humanos , Alérgenos/química , Glutamina , Glutens/química , Epitopos/química , Ácido Cítrico
7.
Clin Transl Med ; 13(12): e1498, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38037461

RESUMO

BACKGROUND: Endothelial cell (EC) dysfunction leading to microvascular alterations is a hallmark of technique failure in peritoneal dialysis (PD). However, the mechanisms underlying EC dysfunction in PD are poorly defined. METHODS: We combined RNA sequencing with metabolite set analysis to characterize the metabolic profile of peritoneal ECs from a mouse model of PD. This was combined with EC-selective blockade of glycolysis by genetic or pharmacological inhibition of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) in vivo and in vitro. We also investigated the association between peritoneal EC glycolysis and microvascular alterations in human peritoneal samples from patients with end-stage kidney disease (ESKD). RESULTS: In a mouse model of PD, peritoneal ECs had a hyperglycolytic metabolism that shunts intermediates into nucleotide synthesis. Hyperglycolytic mouse peritoneal ECs displayed a unique active phenotype with increased proliferation, permeability and inflammation. The active phenotype of mouse peritoneal ECs can be recapitulated in human umbilical venous ECs and primary human peritoneal ECs by vascular endothelial growth factor that was released from high glucose-treated mesothelial cells. Importantly, reduction of peritoneal EC glycolysis, via endothelial deficiency of the glycolytic activator PFKFB3, inhibited PD fluid-induced increases in peritoneal capillary density, vascular permeability and monocyte extravasation, thereby protecting the peritoneum from the development of structural and functional damages. Mechanistically, endothelial PFKFB3 deficiency induced the protective effects in part by inhibiting cell proliferation, VE-cadherin endocytosis and monocyte-adhesion molecule expression. Pharmacological PFKFB3 blockade induced a similar therapeutic benefit in this PD model. Human peritoneal tissue from patients with ESKD also demonstrated evidence of increased EC PFKFB3 expression associated with microvascular alterations and peritoneal dysfunction. CONCLUSIONS: These findings reveal a critical role of glycolysis in ECs in mediating the deterioration of peritoneal function and suggest that strategies targeting glycolysis in peritoneal ECs may be of therapeutic benefit for patients undergoing PD.


Assuntos
Células Endoteliais , Diálise Peritoneal , Camundongos , Animais , Humanos , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular , Endotélio/metabolismo , Diálise Peritoneal/efeitos adversos , Glicólise , Modelos Animais de Doenças
9.
Front Endocrinol (Lausanne) ; 14: 1220957, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920254

RESUMO

Hypertriglyceridemia-induced acute pancreatitis seldom occurs in the second trimester of pregnancy with gestational diabetes mellitus. For these patients, the existing knowledge on concomitant hyperglycemia is not sufficient. We report a case of abruptio placentae and epileptic seizure following perinatal hyperglycaemia in woman with gestational diabetes mellitus and hypertriglyceridemia-induced acute pancreatitis. The occurrence of abruptio placentae and epileptic seizure may be associated with concomitant hyperglycemia, and the epileptic seizure was terminated after she underwent treatment with insulin. We should pay more attention to the adverse effects of perinatal hyperglycemia and continue to give appropriate insulin treatment even if patients have passed the acute phase of hypertriglyceridemia-induced acute pancreatitis.


Assuntos
Descolamento Prematuro da Placenta , Diabetes Gestacional , Epilepsia , Hiperglicemia , Hipertrigliceridemia , Pancreatite , Gravidez , Feminino , Humanos , Descolamento Prematuro da Placenta/etiologia , Hiperglicemia/complicações , Doença Aguda , Pancreatite/complicações , Convulsões , Hipertrigliceridemia/complicações , Epilepsia/complicações , Insulina
10.
Atherosclerosis ; 386: 117374, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37995600

RESUMO

BACKGROUND AND AIMS: Recent studies have suggested that MIC26 (apolipoprotein O, APOO), a novel mitochondrial inner membrane protein, is involved in inflammation. Thus, the role of macrophage MIC26 in acute inflammation and chronic inflammatory disease atherosclerosis was investigated. METHODS: Macrophage-specific MIC26 knockout mice (MIC26LysM) were generated by crossing Apooflox/flox and LysMcre+/- mice. An endotoxemia mouse model was generated to explore the effects of macrophage MIC26 deficiency on acute inflammation, while an atherosclerosis mouse model was constructed by crossing MIC26LysM mice with Apoe-/- mice and challenged with a Western diet. Atherosclerotic plaques, primary macrophage function, and mitochondrial structure and function were analyzed. RESULTS: MIC26 knockout did not affect the median survival time and post-injection serum interleukin 1ß concentrations in mice with endotoxemia. Mice with MIC26 deficiency in an Apoe-/- background had smaller atherosclerotic lesions and necrotic core than the control group. In vitro studies found that the loss of MIC26 did not affect macrophage polarization, apoptosis, or lipid handling capacity, but increased efferocytosis (the ability to clear apoptotic cells). An in situ efferocytosis assay of plaques also showed that the ratio of macrophage-associated apoptotic cells to free apoptotic cells was higher in the MIC26-deficient group than in the control group, indicating increased efferocytosis. In addition, an in vivo thymus efferocytosis assay indicated that MIC26 deletion promoted efferocytosis. Mechanistically, the loss of MIC26 resulted in an abnormal mitochondrial inner membrane structure, increased mitochondrial fission, and decreased mitochondrial membrane potential. Loss of MIC26 reduced mitochondria optic atrophy type 1 (OPA1) protein, and OPA1 silencing in macrophages promoted efferocytosis. Overexpression of OPA1 abolished the increase in efferocytosis produced by MIC26 deficiency. CONCLUSIONS: Macrophage MIC26 deletion alleviated advanced atherosclerosis and necrotic core expansion by promoting efferocytosis. This mechanism may be related to the increased mitochondrial fission caused by reduced mitochondrial OPA1.


Assuntos
Aterosclerose , Animais , Camundongos , Apolipoproteínas E , Apoptose , Aterosclerose/genética , Aterosclerose/metabolismo , Endotoxemia/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necrose/metabolismo
11.
Nanomaterials (Basel) ; 13(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37836269

RESUMO

The water pollution caused by the release of organic pollutants has attracted remarkable attention, and solutions for wastewater treatment are being developed. In particular, the photocatalytic removal of organic pollutants in water systems is a promising strategy to realize the self-cleaning of ecosystems under solar light irradiation. However, at present the semiconductor-based nanocatalysts can barely satisfy the industrial requirements because their wide bandgaps restrict the effective absorption of solar light, which needs an energy band modification to boost the visible light harvesting via surface engineering. As an innovative approach, pulsed laser heating in liquids has been utilized to fabricate the nanomaterials in catalysis; it demonstrates multi-controllable features, such as size, morphology, crystal structure, and even optical or electrical properties, with which photocatalytic performances can be precisely optimized. In this review, focusing on the powerful heating effect of pulsed laser irradiation in liquids, the functional nanomaterials fabricated by laser technology and their applications in the catalytic degradation of various organic pollutants are summarized. This review not only highlights the innovative works of pulsed laser-prepared nanomaterials for organic pollutant removal in water systems, such as the photocatalytic degradation of organic dyes and the catalytic reduction of toxic nitrophenol and nitrobenzene, it also critically discusses the specific challenges and outlooks of this field, including the weakness of the produced yields and the relevant automatic strategies for massive production.

12.
J Nutr ; 153(10): 2994-3002, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37541543

RESUMO

BACKGROUND: Dairy consumption is related to chronic disease risk; however, the measurement of dairy consumption has largely relied upon self-report. Untargeted metabolomics allows for the identification of objective markers of dietary intake. OBJECTIVES: We aimed to identify associations between dietary dairy intake (total dairy, low-fat dairy, and high-fat dairy) and serum metabolites in 2 independent study populations of United States adults. METHODS: Dietary intake was assessed with food frequency questionnaires. Multivariable linear regression models were used to estimate cross-sectional associations between dietary intake of dairy and 360 serum metabolites analyzed in 2 subgroups of the Atherosclerosis Risk in Communities study (ARIC; n = 3776). Results from the 2 subgroups were meta-analyzed using fixed effects meta-analysis. Significant meta-analyzed associations in the ARIC study were then tested in the Bogalusa Heart Study (BHS; n = 785). RESULTS: In the ARIC study and BHS, the mean age was 54 and 48 years, 61% and 29% were Black, and the mean dairy intake was 1.7 and 1.3 servings/day, respectively. Twenty-nine significant associations between dietary intake of dairy and serum metabolites were identified in the ARIC study (total dairy, n = 14; low-fat dairy, n = 10; high-fat dairy, n = 5). Three associations were also significant in BHS: myristate (14:0) was associated with high-fat dairy, and pantothenate was associated with total dairy and low-fat dairy, but 23 of the 27 associations significant in the ARIC study and tested in BHS were not associated with dairy in BHS. CONCLUSIONS: We identified metabolomic associations with dietary intake of dairy, including 3 associations found in 2 independent cohort studies. These results suggest that myristate (14:0) and pantothenate (vitamin B5) are candidate biomarkers of dairy consumption.


Assuntos
Aterosclerose , Miristatos , Adulto , Humanos , Estados Unidos/epidemiologia , Estudos Transversais , Estudos Longitudinais , Biomarcadores , Aterosclerose/epidemiologia , Laticínios/análise , Fatores de Risco , Dieta
13.
Int J Biol Macromol ; 248: 125862, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467827

RESUMO

Currently, growing concerns about sustainable development and health awareness have driven the development of plant-based meat substitutes. Soybean proteins (SPs) are eco-friendly and high-quality food sources with well-balanced amino acids to meet consumer demand. The functionality and physicochemical attributes of SPs can be improved by appropriate processing and modification. With the burgeoning advances of modern processing technologies in the food industry, a multitude of functional foods and ingredients can be manufactured based on SPs. This review mainly highlights the conformational changes of SPs under traditional and emerging processing technologies and the resultant functionality modifications. By elucidating the relationship between processing-induced structural and functional alterations, detailed and systematic insights are provided regarding the exploitation of these techniques to develop different nutritional and functional soybean products. Some popular methods to modify SPs properties are discussed in this paper, including thermal treatment, fermentation, enzyme catalysis, high hydrostatic pressure, high-intensity ultrasound, atmospheric cold plasma, high-moisture extrusion, glycosylation, pulsed ultraviolet light and interaction with polyphenols. Given these processing technologies, it is promising to expand the application market for SPs and boost the advancement of the soybean industry.


Assuntos
Manipulação de Alimentos , Proteínas de Soja , Manipulação de Alimentos/métodos , Glycine max , Qualidade dos Alimentos , Indústria de Processamento de Alimentos
14.
Circ Res ; 132(12): 1628-1647, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37289909

RESUMO

Cardiovascular disease (CVD) is a leading cause of morbidity and mortality globally. Although CVD events do not typically manifest until older adulthood, CVD develops gradually across the life-course, beginning with the elevation of risk factors observed as early as childhood or adolescence and the emergence of subclinical disease that can occur in young adulthood or midlife. Genomic background, which is determined at zygote formation, is among the earliest risk factors for CVD. With major advances in molecular technology, including the emergence of gene-editing techniques, along with deep whole-genome sequencing and high-throughput array-based genotyping, scientists now have the opportunity to not only discover genomic mechanisms underlying CVD but use this knowledge for the life-course prevention and treatment of these conditions. The current review focuses on innovations in the field of genomics and their applications to monogenic and polygenic CVD prevention and treatment. With respect to monogenic CVD, we discuss how the emergence of whole-genome sequencing technology has accelerated the discovery of disease-causing variants, allowing comprehensive screening and early, aggressive CVD mitigation strategies in patients and their families. We further describe advances in gene editing technology, which might soon make possible cures for CVD conditions once thought untreatable. In relation to polygenic CVD, we focus on recent innovations that leverage findings of genome-wide association studies to identify druggable gene targets and develop predictive genomic models of disease, which are already facilitating breakthroughs in the life-course treatment and prevention of CVD. Gaps in current research and future directions of genomics studies are also discussed. In aggregate, we hope to underline the value of leveraging genomics and broader multiomics information for characterizing CVD conditions, work which promises to expand precision approaches for the life-course prevention and treatment of CVD.


Assuntos
Doenças Cardiovasculares , Humanos , Idoso , Adulto Jovem , Adulto , Criança , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/prevenção & controle , Estudo de Associação Genômica Ampla , Genômica , Fatores de Risco
15.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(5): 468-473, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37248841

RESUMO

Macrophage as a crucial component of innate immunity, plays an important role in inflammation and infection immunity. Notch signal pathway is a highly conserved pathway, which regulates cellular fate and participates in numerous pathological processes. At present, a lot of literature has confirmed the role of Notch signaling in regulating the differentiation, activation and metabolism of macrophage during inflammation and infection. This review focuses on how Notch signaling promotes macrophage pro-inflammatory and anti-infective immune function in different inflammatory and infectious diseases. In this regulation, Notch signaling interact with TLR signaling in macrophages or inflammatory-related cytokines including IL-6, IL-12, and TNF-α. Additionally, the potential application and challenges of Notch signaling as a therapeutic target against inflammation and infectious diseases are also discussed.


Assuntos
Doenças Transmissíveis , Transdução de Sinais , Humanos , Macrófagos , Citocinas/metabolismo , Inflamação/metabolismo , Receptores Notch/metabolismo
16.
Macromol Rapid Commun ; 44(15): e2300128, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37139707

RESUMO

Regenerative medicine is a highly regarded multidisciplinary field that aims to transform the future of clinical medicine through curative strategies rather than palliative therapies. As an emerging field, the development of regenerative medicine cannot be achieved without multifunctional biomaterials. Among the various bioscaffold materials, hydrogels are one of the materials of interest in bioengineering and medical research because of their similarity to the natural extracellular matrix and good biocompatibility. However, conventional hydrogels have simple internal structures and single cross-linking modes, which require improvement in a single function and structural stability. Introducing multifunctional nanomaterials into 3D hydrogel networks physically or chemically avoids their disadvantages. Nanomaterials (NMs) are materials in the size range of 1-100 nm with distinct physical and chemical properties that differ from that of the macroscopic size and enable hydrogels to exhibit multifunctionality. Although regenerative medicine and hydrogels have been well researched in their respective fields, the connection between nanocomposite hydrogels (NCHs) and regenerative medicine has not been elaborated. Therefore, this review briefly describes the preparation and design requirements of NCHs and discusses their applications and challenges in regenerative medicine, hoping to clarify the relationship between the two.


Assuntos
Medicina Regenerativa , Engenharia Tecidual , Nanogéis , Materiais Biocompatíveis/uso terapêutico , Hidrogéis/química
17.
Food Res Int ; 169: 112842, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254415

RESUMO

Currently, the biological consequences of advanced glycation end-products (AGEs) and their link to the antigenicity of food allergens are largely unknown due to the uncertainty in their digestive fates within the body. In this study, the influence of glycation derived from α-dicarbonyl compounds (α-DCs), precursors of AGEs, on digestive behaviors of ovalbumin (OVA) was investigated in a two-step simulated gastrointestinal (GI) model. Methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone were selected as typical α-DCs to obtain glycated OVA with different AGE-modifications (AGE-Ms). It was unveiled that α-DC-glycation reduced the digestibility of OVA via blocking tryptic cleavage sites and inducing steric hindrance, especially seen in the GO- and MGO-OVA groups. The formed AGE-Ms, depending on the precursor type, showed masking effects on the epitopes of OVA, which counteracted the negative effects of reduced digestibility on its antigenicity. Substantial changes in the peptide release patterns were also noted in glycated OVA, including alterations in the sequences and structures of several known protease-resistant epitopes of OVA. This study provides new insights into the nutritional and healthy effects of MRPs in heat-processed foods, as well as their potential connection to the modulation of egg allergy.


Assuntos
Produtos Finais de Glicação Avançada , Reação de Maillard , Ovalbumina/química , Produtos Finais de Glicação Avançada/química , Óxido de Magnésio , Peptídeos , Glioxal/química , Aldeído Pirúvico
18.
Clin Epigenetics ; 15(1): 61, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031184

RESUMO

BACKGROUND: Previous studies have reported cross-sectional associations between measures of epigenetic age acceleration (EAA) and kidney function phenotypes. However, the temporal and potentially causal relationships between these variables remain unclear. We conducted a bidirectional two-sample Mendelian randomization study of EAA and kidney function. Genetic instruments for EAA and estimate glomerular filtration rate (eGFR) were identified from previous genome-wide association study (GWAS) meta-analyses of European-ancestry participants. Causal effects of EAA on kidney function and kidney function on EAA were assessed through summary-based Mendelian randomization utilizing data from the CKDGen GWAS meta-analysis of log-transformed estimated glomerular filtration rate (log-eGFR; n = 5,67,460) and GWAS meta-analyses of EAA (n = 34,710). An allele score-based Mendelian randomization leveraging individual-level data from UK Biobank participants (n = 4,33,462) further examined the effects of EAA on kidney function. RESULTS: Using summary-based Mendelian randomization, we found that each 5 year increase in intrinsic EAA (IEAA) and GrimAge acceleration (GrimAA) was associated with - 0.01 and - 0.02 unit decreases in log-eGFR, respectively (P = 0.02 and P = 0.09, respectively), findings which were strongly supported by allele-based Mendelian randomization study (both P < 0.001). Summary-based Mendelian randomization identified 24% increased odds of CKD with each 5-unit increase in IEAA (P = 0.05), with consistent findings observed in allele score-based analysis (P = 0.07). Reverse-direction Mendelian randomization identified potentially causal effects of decreased kidney function on HannumAge acceleration (HannumAA), GrimAA, and PhenoAge acceleration (PhenoAA), conferring 3.14, 1.99, and 2.88 year decreases in HanumAA, GrimAA, and PhenoAA, respectively (P = 0.003, 0.05, and 0.002, respectively) with each 1-unit increase in log-eGFR. CONCLUSION: This study supports bidirectional causal relationships between EAA and kidney function, pointing to potential prevention and therapeutic strategies.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Estudos Transversais , Metilação de DNA , Rim , Epigênese Genética
19.
Metabolism ; 144: 155564, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37088120

RESUMO

BACKGROUND: Mitochondrial dysfunction and aberrant structure in adipose tissue occur in obesity and obesity-linked brown adipose tissue (BAT) whitening; however, whether this aberrant architecture contributes to or is the result of obesity is unknown. Apolipoprotein O (APOO) is a constitutive protein of the mitochondrial cristae organizing system complex. This study aimed to characterize the physiological consequences of APOO deficiency in vivo. METHODS: APOO expression was analyzed in different human and murine adipose depots, and mice lacking APOO in adipocytes (ApooACKO) are developed to examine the metabolic consequences of adipocyte-specific APOO ablation in vitro and in vivo. RESULTS: Results showed that APOO expression is reduced in BAT from both diet-induced and leptin-deficient obese mice. APOO-knockout mice showed increased adiposity, BAT dysfunction and whitening, reduced non-shivering thermogenesis, and blunted responses to cold stimuli. APOO deficiency disrupted mitochondrial structure in brown adipocytes and impaired oxidative phosphorylation, thereby inducing a shift from oxidative to glycolytic metabolism, increasing lipogenic enzyme levels and BAT whitening. APOO inactivation inhibited thermogenesis in BAT by reducing mitochondrial long-chain fatty acid oxidation. It also disturbed peroxisomal biogenesis and very long-chain fatty acid oxidation via peroxisome proliferator-activated receptor α. CONCLUSIONS: Altogether, APOO deficiency in adipocytes aggravates BAT whitening and diet-induced obesity; thus, APOO could be a therapeutic target for obesity.


Assuntos
Tecido Adiposo Marrom , PPAR alfa , Animais , Humanos , Camundongos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Ácidos Graxos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Obesidade/metabolismo , Peroxissomos/metabolismo , PPAR alfa/metabolismo , Termogênese
20.
Arch Oral Biol ; 151: 105695, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37086493

RESUMO

OBJECTIVE: To study the effect of FAM72 on the prognosis of patients with oral squamous cell carcinoma (OSCC) and to explore the relationship between FAM72 and OSCC. DESIGN: We used a vast array of databases and analytical vehicles to assess the relation between FAM72 and OSCC, including The Cancer Genome Atlas (TCGA), Metascape, and MethSurv. We made a preliminary verification of OSCC lines and tissues by real time quantitative polymerase chain reaction (RT-qPCR). RESULTS: FAM72 was higher in OSCC than in normal tissues. Analysis of univariate COX data indicated that elevated expression of FAM72A, FAM72B, and FAM72C in OSCC was related to poor overall survival. Moreover, FAM72B and FAM72C were independent of overall survival in multiple COX regression. FAM72A-D and its coexpressed genes in Metascape were analyzed by Gene Ontology (GO), they were enriched in cellular cycle, mitotic and DNA metabolism. Gene set enrichment analysis (GSEA) demonstrated an enrichment in pathways related to cell metabolism. Additionally, high FAM72 expression related to a worse prognosis in OSCC patients. FAM72A-D linked to the infiltration of tumor immune cell in OSCC patients. We found that methylation levels are likely linked to prognosis in OSCC patients. We used RT-qPCR to ascertain the differential FAM72B and FAM72C expression levels in cancer and paracancerous tissues of OSCC, human normal oral keratinocytes (HOK), and human tongue squamous cell carcinoma (Cal-33). CONCLUSION: Our findings indicate that FAM72B and FAM72C are potential molecular markers of poor prognosis in OSCC and may act as novel targets for OSCC treatment strategies.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Neoplasias da Língua , Humanos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias Bucais/patologia , Neoplasias da Língua/genética , Prognóstico , Biomarcadores Tumorais/genética , Neoplasias de Cabeça e Pescoço/genética , Regulação Neoplásica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA