Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38730553

RESUMO

OBJECTIVES: Mycophenolic acid (MPA) is recommended for lupus nephritis (LN) treatment, but with large inter-individual variability in pharmacokinetics (PK). The aim of this study is to reveal the relationship between MPA exposure and disease response and adverse drug reactions in pediatric LN patients. METHOD: This was a population-based observational cohort study. A total of 86 pediatric LN patients treated with mycophenolate mofetil (MMF) for induction therapy were enrolled. The area-under the concentration-time curve (AUC) was calculated using MPA concentrations according to a limited sampling strategy. Receiver operating characteristic analysis was performed to assess the MPA-AUC threshold values. The cumulative incidence of renal remission and inactive SLE over time was evaluated by Kaplan-Meier's analysis. RESULTS: MPA-AUC was identified as an independent factor associated with renal remission and lupus activity at 6 and 12 months after MMF treatment, and the improved renal remission rates was correlated with higher MPA-AUC, with thresholds of 29.81 and 30.63 µg·h·mL - 1 at 6 and 12 months, respectively. Furthermore, the thresholds for maintaining the hypoactive state of LN were 30.96 and 31.19 µg·h·mL - 1at 6 months and 12 months, respectively. Patients reaching target thresholds for MPA-AUC achieved renal response or stable disease earlier. In addition, the MPA-AUC threshold for decreasing MMF-related adverse reactions was 50.80 µg·h·mL - 1. CONCLUSION: The initial and long-term treatments of pediatric LN patients with MMF should be individualized according to the MPA-AUC, and the recommended MPA exposure is 31.19-50.80 µg·h·mL - 1.

2.
Pharm Res ; 41(4): 699-709, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519815

RESUMO

AIMS: To develop a semi-mechanistic hepatic compartmental model to predict the effects of rifampicin, a known inducer of CYP3A4 enzyme, on the metabolism of five drugs, in the hope of informing dose adjustments to avoid potential drug-drug interactions. METHODS: A search was conducted for DDI studies on the interactions between rifampicin and CYP substrates that met specific criteria, including the availability of plasma concentration-time profiles, physical and absorption parameters, pharmacokinetic parameters, and the use of healthy subjects at therapeutic doses. The semi-mechanistic model utilized in this study was improved from its predecessors, incorporating additional parameters such as population data (specifically for Chinese and Caucasians), virtual individuals, gender distribution, age range, dosing time points, and coefficients of variation. RESULTS: Optimal parameters were identified for our semi-mechanistic model by validating it with clinical data, resulting in a maximum difference of approximately 2-fold between simulated and observed values. PK data of healthy subjects were used for most CYP3A4 substrates, except for gilteritinib, which showed no significant difference between patients and healthy subjects. Dose adjustment of gilteritinib co-administered with rifampicin required a 3-fold increase of the initial dose, while other substrates were further tuned to achieve the desired drug exposure. CONCLUSIONS: The pharmacokinetic parameters AUCR and CmaxR of drugs metabolized by CYP3A4, when influenced by Rifampicin, were predicted by the semi-mechanistic model to be approximately twice the empirically observed values, which suggests that the semi-mechanistic model was able to reasonably simulate the effect. The doses of four drugs adjusted via simulation to reduce rifampicin interaction.


Assuntos
Compostos de Anilina , Citocromo P-450 CYP3A , Pirazinas , Rifampina , Humanos , Rifampina/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Modelos Epidemiológicos , Interações Medicamentosas , Modelos Biológicos
3.
Front Pharmacol ; 15: 1330855, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434709

RESUMO

A mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model links the concentration-time profile of a drug with its therapeutic effects based on the underlying biological or physiological processes. Clinical endpoints play a pivotal role in drug development. Despite the substantial time and effort invested in screening drugs for favourable pharmacokinetic (PK) properties, they may not consistently yield optimal clinical outcomes. Furthermore, in the virtual compound screening phase, researchers cannot observe clinical outcomes in humans directly. These uncertainties prolong the process of drug development. As incorporation of Artificial Intelligence (AI) into the physiologically based pharmacokinetic/pharmacodynamic (PBPK) model can assist in forecasting pharmacodynamic (PD) effects within the human body, we introduce a methodology for utilizing the AI-PBPK platform to predict the PK and PD outcomes of target compounds in the early drug discovery stage. In this integrated platform, machine learning is used to predict the parameters for the model, and the mechanism-based PD model is used to predict the PD outcome through the PK results. This platform enables researchers to align the PK profile of a drug with desired PD effects at the early drug discovery stage. Case studies are presented to assess and compare five potassium-competitive acid blocker (P-CAB) compounds, after calibration and verification using vonoprazan and revaprazan.

4.
Talanta ; 274: 125921, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552481

RESUMO

Breast cancer is the most common malignant tumor in women, which accounts for 6.9% of all cancer-related deaths. Early diagnosis is crucial for making the best clinical decision and improving the prognosis of patients. Circulating tumor cells (CTCs) have been regarded as significant tumor biomarkers. Herein, we designed a colorimetric biosensor for breast cancer CTCs quantification based on ladder-branch hybridization chain reaction (HCR) and DNA flowers/gold nanoclusters (DFs/AuNCs) nanozyme. With the assistance of complementary DNA labeled on magnetic beads (MBs), the cleavage products of RNA-cleaving DNAzymes (RCDs) could be rapidly captured, subsequently triggering ladder-branch HCR. In addition, the DFs/AuNCs nanozyme was applied for colorimetric analysis, which further improved the sensitivity for the detection of target CTCs. Benefiting from specific RCDs, ladder-branch HCR and DFs/AuNCs, we achieved a superior detection limit of 3 cells/mL as well as a broad linear range of 10 cells/mL to 104 cells/mL. Conclusively, this colorimetric biosensor achieved sensitively and selectively detection of breast cancer CTCs without the participation of enzymes at room temperature, which might provide new insight into the early detection of breast cancer.


Assuntos
Neoplasias da Mama , Colorimetria , Ouro , Nanopartículas Metálicas , Células Neoplásicas Circulantes , Hibridização de Ácido Nucleico , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Humanos , Colorimetria/métodos , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico , Ouro/química , Feminino , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , DNA Catalítico/química , DNA Catalítico/metabolismo , Limite de Detecção , Células MCF-7
5.
Waste Manag ; 177: 252-265, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354633

RESUMO

The larvae of black soldier fly (BSFL) convert organic waste into insect proteins used as feedstuff for livestock and aquaculture. BSFL production performance is considerably reduced during winter season. Herein, the intraspecific diversity of ten commercial BSF colonies collected in China was evaluated. The Bioforte colony was subjected to selective breeding at 12 °C and 16 °C to develop cold-tolerant BSF with improved production performance. After breeding for nine generations, the weight of larvae, survival rate, and the dry matter conversion rate significantly increased. Subsequently, intestinal microbiota in the cold-tolerant strain showed that bacteria belonging to Morganella, Dysgonomonas, Salmonella, Pseudochrobactrum, and Klebsiella genera were highly represented in the 12 °C bred, while those of Acinetobacter, Pseudochrobactrum, Enterococcus, Comamonas, and Leucobacter genera were significantly represented in the 16 °C bred group. Metagenomic revealed that several animal probiotics of the Enterococcus and Vagococcus genera were greatly enriched in the gut of larvae bred at 16 °C. Moreover, bacterial metabolic pathways including carbohydrate, lipid, amino acids, and cofactors and vitamins, were significantly increased, while organismal systems and human diseases was decreased in the 16 °C bred group. Transcriptomic analysis revealed that the upregulated differentially expressed genes in the 16 °C bred groups mainly participated in Autophagy-animal, AMPK signaling pathway, mTOR signaling pathway, Wnt signaling pathway, FoxO signaling pathway, Hippo signaling pathway at day 34 under 16 °C conditions, suggesting their significant role in the survival of BSFL. Taken together, these results shed lights on the role of intestinal microflora and gene pathways in the adaptation of BSF larvae to cold stress.


Assuntos
Dípteros , Microbioma Gastrointestinal , Animais , Humanos , Larva/genética , Seleção Artificial , Aminoácidos , Dípteros/genética
6.
ACS Appl Mater Interfaces ; 16(13): 15916-15930, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38416419

RESUMO

Photodynamic therapy's antitumor efficacy is hindered by the inefficient generation of reactive oxygen species (ROS) due to the photogenerated electron-hole pairs recombination of photosensitizers (PS). Therefore, there is an urgent need to develop efficient PSs with enhanced carrier dynamics. Herein, we designed Schottky junctions composed of cobalt tetroxide and palladium nanocubes (Co3O4@Pd) with a built-in electric field as effective PS. The built-in electric field enhanced photogenerated charge separation and migration, resulting in the generation of abundant electron-hole pairs and allowing effective production of ROS. Thanks to the built-in electric field, the photocurrent intensity and carrier lifetime of Co3O4@Pd were approximately 2 and 3 times those of Co3O4, respectively. Besides, the signal intensity of hydroxyl radical and singlet oxygen increased to 253.4% and 135.9%, respectively. Moreover, the localized surface plasmon resonance effect of Pd also enhanced the photothermal conversion efficiency of Co3O4@Pd to 40.50%. In vitro cellular level and in vivo xenograft model evaluations demonstrated that Co3O4@Pd could generate large amounts of ROS, trigger apoptosis, and inhibit tumor growth under near-infrared laser irradiation. Generally, this study reveals the contribution of the built-in electric field to improving photodynamic performance and provides new ideas for designing efficient inorganic PSs.


Assuntos
Cobalto , Neoplasias , Óxidos , Fotoquimioterapia , Humanos , Espécies Reativas de Oxigênio , Fármacos Fotossensibilizantes/farmacologia , Neoplasias/tratamento farmacológico , Raios Infravermelhos
7.
ACS Pharmacol Transl Sci ; 7(2): 406-420, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38357287

RESUMO

Monoclonal antibody drugs targeting proprotein convertase kwashiorkor type 9 (PCSK9) have recently demonstrated remarkable success in lipid-lowering therapies. Specifically, antibodies derived from immunoglobulin G1 (IgG1, alirocumab) and IgG2 (evolocumab) have been successfully utilized for this purpose. Recently, a novel recombinant fully human anti-PCSK9 monoclonal antibody, originally derived from IgG4 and designated as SAL003, was developed. This study aimed to explore the pharmacokinetics, efficacy, and safety of SAL003 in both single and multiple administrations. The investigation included both healthy individuals and individuals with hyperlipidemia. To comprehensively grasp the pharmacokinetic (PK) and pharmacodynamic (PD) attributes of SAL003, this study employed population PK-PD (popPK-PD) and mechanistic systems pharmacology (MSP) modeling. These models were employed for predicting low-density lipoprotein cholesterol (LDLc) concentrations and appropriate dosages across diverse potential clinical scenarios. The research results indicated that SAL003 demonstrated comparable pharmacokinetic properties to evolocumab, exhibited notable effectiveness in reducing lipid levels, and was confirmed to be safe and well-tolerated in both healthy individuals and individuals with hyperlipidemia. Notably, SAL003 displayed differing effectiveness between patients and healthy populations. This discrepancy was observed in the popPK-PD model, with a positive population influence on Emax, and the MSP model, indicating elevated PCSK9 clearance and LDLr-related LDLc clearance in the healthy group. Simulation results from the popPK-PD and MSP models indicated a dosage of 140 mg of Q4W and 420 mg of Q8W for phase II/III clinical trials. Reducing the drug dose or extending the dosing intervals may result in treatment failure. Additionally, the simultaneous use of statins led to elevated PCSK9 levels and intensified fluctuations in steady-state LDLc levels during SAL003 treatment.

8.
BMC Cancer ; 24(1): 230, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373930

RESUMO

BACKGROUND: This study aimed to identify metabolic subtypes in ESCA, explore their relationship with immune landscapes, and establish a metabolic index for accurate prognosis assessment. METHODS: Clinical, SNP, and RNA-seq data were collected from 80 ESCA patients from the TCGA database and RNA-seq data from the GSE19417 dataset. Metabolic genes associated with overall survival (OS) and progression-free survival (PFS) were selected, and k-means clustering was performed. Immune-related pathways, immune infiltration, and response to immunotherapy were predicted using bioinformatic algorithms. Weighted gene co-expression network analysis (WGCNA) was conducted to identify metabolic genes associated with co-expression modules. Lastly, cell culture and functional analysis were performed using patient tissue samples and ESCA cell lines to verify the identified genes and their roles. RESULTS: Molecular subtypes were identified based on the expression profiles of metabolic genes, and univariate survival analysis revealed 163 metabolic genes associated with ESCA prognosis. Consensus clustering analysis classified ESCA samples into three distinct subtypes, with MC1 showing the poorest prognosis and MC3 having the best prognosis. The subtypes also exhibited significant differences in immune cell infiltration, with MC3 showing the highest scores. Additionally, the MC3 subtype demonstrated the poorest response to immunotherapy, while the MC1 subtype was the most sensitive. WGCNA analysis identified gene modules associated with the metabolic index, with SLC5A1, NT5DC4, and MTHFD2 emerging as prognostic markers. Gene and protein expression analysis validated the upregulation of MTHFD2 in ESCA. MTHFD2 promotes the progression of ESCA and may be a potential therapeutic target for ESCA. CONCLUSION: The established metabolic index and identified metabolic genes offer potential for prognostic assessment and personalized therapeutic interventions for ESCA, underscoring the importance of targeting metabolism-immune interactions in ESCA. MTHFD2 promotes the progression of ESCA and may be a potential therapeutic target for ESCA.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Prognóstico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Imunoterapia , Regulação para Cima
9.
Angew Chem Int Ed Engl ; 63(12): e202319536, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38265637

RESUMO

Achieving circularly polarized organic ultralong room-temperature phosphorescence (CP-OURTP) with a high luminescent dissymmetry factor (glum ) is crucial for diverse optoelectronic applications. In particular, dynamically controlling the dissymmetry factor of CP-OURTP can profoundly advance these applications, but it is still unprecedented. This study introduces an effective strategy to achieve photoirradiation-driven chirality regulation in a bilayered structure film, which consists of a layer of soft helical superstructure incorporated with a light-driven molecular motor and a layer of room-temperature phosphorescent (RTP) polymer. The prepared bilayered film exhibits CP-OURTP with an emission lifetime of 805 ms and a glum value up to 1.38. Remarkably, the glum value of the resulting CP-OURTP film can be reversibly controlled between 0.6 and 1.38 over 20 cycles by light irradiation, representing the first example of dynamically controlling the glum in CP-OURTP.

10.
J Proteome Res ; 23(2): 663-672, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38175711

RESUMO

Esophageal squamous cell carcinoma (ESCC) is an aggressive malignant tumor with a poor prognosis due to insidious symptoms that make early diagnosis difficult. Despite the combination of multiple treatment modalities, the recurrence and mortality rates of ESCC remain high. Neoadjuvant chemotherapy combined with immunotherapy is an emerging treatment modality that improves the prognosis of patients with ESCC. However, owing to the presence of hyperprogression and pseudoprogression, the currently used methods cannot accurately evaluate the efficacy of this therapy in patients, thus creating an evaluation bias and depriving these patients of the opportunity to benefit. We used untargeted lipidomics to identify the differences in lipid composition between cancer specimens and normal tissue specimens in the neoadjuvant chemotherapy combined with the immunotherapy group and the surgery-alone group of esophageal cancer patients and constructed a prediction model based on sphingomyelin 12:1;2O/30:0 and triglyceride (TG) 60:3 | TG 18:0_24:1_18 using a machine learning approach, which helps to better evaluate the neoadjuvant efficacy of combination therapy and better guide the treatment of ESCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Terapia Neoadjuvante/métodos , Carcinoma de Células Escamosas/tratamento farmacológico , Resultado do Tratamento , Lipidômica , Quimioterapia Adjuvante , Esofagectomia/métodos , Imunoterapia
11.
J Thorac Dis ; 15(11): 6228-6237, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38090323

RESUMO

Background: Camrelizumab has been demonstrated to be a feasible treatment option for locally advanced esophageal squamous cell carcinoma (ESCC) when combined with neoadjuvant chemotherapy. This trial was conducted to investigate the effectiveness and safety of camrelizumab-containing neoadjuvant therapy in patients with ESCC in daily practice. Methods: This prospective multicenter observational cohort study was conducted at 13 tertiary hospitals in Southeast China. Patients with histologically or cytologically confirmed ESCC [clinical tumor-node-metastasis (cTNM) stage I-IVA] who had received at least one dose of camrelizumab-containing neoadjuvant therapy were eligible for inclusion. Results: Between June 1, 2020 and July 13, 2022, 255 patients were enrolled and included. The median age was 64 (range, 27 to 82) years. Most participants were male (82.0%) and had clinical stage III-IVA diseases (82.4%). A total of 169 (66.3%) participants underwent surgical resection; 146 (86.4%) achieved R0 resection, and 36 (21.3%) achieved pathological complete response (pCR). Grades 3-5 adverse events (AEs) were experienced by 14.5% of participants. Reactive cutaneous capillary endothelial proliferation occurred in 100 (39.2%) of participants and all were grade 1 or 2. Conclusions: Camrelizumab-containing neoadjuvant therapy has acceptable effectiveness and safety profiles in real-life ESCC patients.

12.
Small ; : e2309704, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100215

RESUMO

Single-atom nanozymes (SAzymes) are emerging natural enzyme mimics and have attracted much attention in the biomedical field. SAzymes with Metal─Nx sites designed on carbon matrixes are currently the mainstream in research. It is of great significance to further expand the types of SAzymes to enrich the nanozyme library. Single-atom alloys (SAAs) are a material in which single-atom metal sites are dispersed onto another active metal matrix, and currently, there is limited research on their enzyme-like catalytic performance. In this work, a biodegradable Pt1 Pd SAA is fabricated via a simple galvanic replacement strategy, and for the first time reveals its intrinsic enzyme-like catalytic performance including catalase-, oxidase-, and peroxidase-like activities, as well as its photodynamic effect. Experimental characterizations demonstrate that the introduction of single-atom Pt sites contributes to enhancing the affinity of Pt1 Pd single-atom alloy nanozyme (SAAzyme) toward substrates, thus exhibiting boosted catalytic efficiency. In vitro and in vivo experiments demonstrate that Pt1 Pd SAAzyme exhibits a photo-controlled therapeutic effect, with a tumor inhibition rate of up to 100%. This work provides vital guidance for opening the research direction of SAAs in enzyme-like catalysis.

13.
Histol Histopathol ; : 18677, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38009743

RESUMO

BACKGROUND AND OBJECTIVES: This study aimed to unveil the potential of UBE2R2-AS1 dysregulation in gastric cancer. In addition, its biological function was assessed. MATERIALS AND METHODS: UBE2R2-AS1 expression was predicted in the ENCORI database. Paired gastric cancer and noncancerous tissues were collected. UBE2R2-AS1 expression was confirmed using RT-qPCR in our patient set. The association of UBE2R2-AS1 with the clinical data of patients was analyzed. Evaluation of the prognostic value of UBE2R2-AS1 was via Kaplan-Meier and Univariate/Multivariate Cox analyses. The effect of UBE2R2-AS1 on the cancer cell malignant phenotype was investigated. RESULTS: Gastric cancer tissues and cells significantly overexpressed UBE2R2-AS1. UBE2R2-AS1 was significantly more abundant in unfavorable clinical pathology, including advanced TNM stage and lymph node metastasis. High expression of UBE2R2-AS1 predicted a poor prognosis with a hazard ratio (HR) of 3.041 and 2.805 after Univariate and Multivariate Cox analysis, respectively. UBE2R2-AS1 can act as a sponge for miR-302b-5p to promote cell proliferation, migration, and invasion of gastric cancer. CONCLUSION: The expression of UBE2R2-AS1 allowed the prognostic stratification of gastric cancer patients. UBE2R2-AS1 may accelerate the progression of gastric cancer via miR-302b-5p.

14.
Heliyon ; 9(11): e21224, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37954373

RESUMO

Reflux esophagitis (RE), an esophageal inflammation caused by reflux of gastric contents, often damages the lower esophagus, seriously affecting the quality of life of patients. This study aims to investigate the therapeutic effects and underlying molecular mechanisms of atractylenolide III (ATL III) on RE model rats. In this research, the RE rat model is established sequentially following hemipyloric ligation, cardia transection, and hydrochloric acid perfusion. Further, the RE-induced rats are intragastrically administrated with ATL III (0.6, 1.2, and 2.4 mg/kg/D) for 28 days to evaluate ATL III therapeutic effects. To study the molecular mechanism, RE rats are treated with a phosphoinositide-3 kinase (PI3K) agonist (740 Y-P) combined with ATL III. The histopathological changes in the esophagus are eventually observed by hematoxylin & eosin (H&E) staining. In addition to changes in gastric pH and levels of reactive oxygen species (ROS), enzyme-linked immunosorbent assay (ELISA) and Western blot analyses are used to detect the expression levels of tumor necrosis factor-α (TNF-α, mmol/L), interleukin (IL)-8, IL-6, IL-1ß in the esophageal tissues. As a result, the lesions in the esophageal tissues of RE rats are alleviated, decreasing the macroscopic observation scores of the esophageal mucosa after ATL III treatment,. The experimental results indicated significantly increased pH value of the gastric contents and reduced ROS, thiobarbituric acid reactants (TBARS), TNF-α, IL-8, IL-6, and IL-1ß levels, as well as expression levels of p-PI3K, p-AKT, iNOS, and nuclear NF-κB proteins in esophageal tissues. In conclusion, the study indicated that ATL III could efficiently treat RE in rats by inhibiting oxidative stress and inflammatory damage through the PI3K/AKT/NF-κB/iNOS pathway.

15.
Sci Rep ; 13(1): 19363, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938614

RESUMO

In multiple malignant tumors, circular RNAs (circRNAs) are believed to play a crucial role. Our prior results demonstrated that circ_ZNF778_006 was significantly increased in esophageal squamous cell carcinoma (ESCC) tissues, but the roles of circ_ZNF778_006 in ESCC is still not clear. The expression of circ_ZNF778_006 was compared in different pathological grades of ESCC. And the expression levels of circ_ZNF778_006, miR-18b-5p, HIF-1α were analyzed by qRT-PCR and Western blot, respectively. Plasmid transfection techniques were applied to prepare ESCC cells with silenced or overexpressed genes (CircZNF778_006, miR-18b-5p). The CCK8 kit was used to determine cell proliferation, and the Transwell assay was used to measure the migration and invasion. The effects of circ_ZNF778_006 on tumor growth was investigated in vivo. Furthermore, luciferase reporter gene assay and RNA-binding protein immunoprecipitation (RIP) were performed to verify the targeting relationship between miR-18b-5p and circZNF778_006, miR-18b-5p and HIF-1α. The expression of circ_ZNF778_006 was positively correlated with pathological grade in ESCC. Circ_ZNF778_006 significantly inhibited sensitivity to 5-fluorouracil & cisplatin. It could promote the proliferation, invasion, migration in ESCC cells and accelerated tumor growth in vivo. Furthermore, circ_ZNF778_006 could upregulate the expression of HIF-1α via sponing miR-18b-5p. Circ_ZNF778_006 promoted ESCC progression by upregulating HIF-1α expression via sponging miR-18b-5p.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/genética , Bandagens , Bioensaio , MicroRNAs/genética
16.
Ecotoxicol Environ Saf ; 265: 115490, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37742582

RESUMO

Fine particulate matter (PM2.5)-related health issues have received increasing attention as a worldwide public health problem, and PM2.5-related chronic kidney disease (CKD) has been emerging over the years. Limited research has focused on the mechanism of PM2.5-induced kidney disease. To investigate the impact of PM2.5 on the kidney and its potential mechanism, we generated a PM2.5-exposed C57BL/6 mouse model by using Shanghai Meteorological and Environment Animal Exposure System (Shanghai-METAS) for 12 weeks, urine, blood and kidney tissues were collected. The pathological changes and the function of the kidney were measured after PM2.5 exposure for 12 weeks. Along with glomerular damage, tubular damage was also severe in PM2.5-induced mice. The results of mRNA-seq indicate that pyroptosis is involved. Pyroptosis is defined as caspase-1-dependent programmed cell death in response to insults. The expression of the nucleotide-binding and oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3), Caspase-1, gasdermin D (GSDMD) and IL-1ß was detected. NLRP3 inflammasome activation and subsequent pyroptosis were observed in PM2.5-exposed kidney tissues and PM2.5-exposed Bumpt cells too. At the meantime, the inhibitors of NLRP3 and caspase-1 were applied to the PM2.5 exposed Bumpt cells. It turned out to have a significant rescue effect of the inhibitors. This study revealed new insights into PM2.5-induced kidney injury and specific kidney pathological damage, as well as morphological changes, and defined the important role of pyroptosis in PM2.5-induced kidney dysfunction.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos Endogâmicos C57BL , China , Rim/metabolismo , Caspase 1/metabolismo , Material Particulado/toxicidade
17.
FASEB J ; 37(9): e23127, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37561547

RESUMO

Our previous research revealed that an increase in PCSK9 is linked to aggravated inflammation in the kidneys of mice affected by a high-fat diet and streptozotocin (HFD/STZ) or in HGPA-induced HK-2 cells. Furthermore, the cGAS/STING pathway has been reported to be involved in diabetic nephropathy (DN). Therefore, in this study, we aimed to examine the correlation between the proinflammatory effect of PCSK9 and the cGAS/STING pathway in DN. We used PCSK9 mAbs to inhibit PCSK9 in vivo and PCSK9 siRNA in vitro and measured the inflammatory phenotype in HFD/STZ-treated mice or HGPA-induced HK-2 cells, and observed decreased blood urea nitrogen, creatinine, UACR, and kidney injury in response to the PCSK9 mAb in HFD/STZ-treated mice. Moreover, IL-1 ß, MCP-1, and TNF-α levels were reduced by the PCSK9 mAb in vivo and PCSK9 siRNA in vitro. We observed increased mtDNA damage and activation of the cGAS-STING signaling pathway during DN, as well as the downstream targets p-TBK1, p-NF-κB p65, and IL-1ß. In a further experiment with an HGPA-induced DN model in HK-2 cells, we revealed that mtDNA damage was increased, which led to the activation of the cGAS/STING system and its downstream targets. Notably, the cGAS-STING signaling pathway was inhibited by the PCSK9 mAb in vivo and PCSK9 siRNA in vitro. In addition, inhibition of STING with C-176 in HGPA-induced HK-2 cells markedly blocked inflammation. In conclusion, we report for the first time that PCSK9 triggers mitochondrial DNA damage and activates the cGAS-STING pathway in DN, which leads to a series of inflammation cascades. PCSK9-targeted intervention can effectively reduce DN inflammation and delay its progression. Moreover, the inhibition of STING significantly abrogated the inflammation triggered by HGPA in HK-2 cells.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Pró-Proteína Convertase 9 , Animais , Camundongos , Nefropatias Diabéticas/metabolismo , DNA Mitocondrial/metabolismo , Inflamação , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Pró-Proteína Convertase 9/genética , Humanos , Linhagem Celular
18.
Adv Sci (Weinh) ; 10(26): e2301152, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37395638

RESUMO

Sonodynamic therapy (SDT) has been widely reported as a noninvasive and high-penetration therapy for cancer; however, the design of an efficient sonosensitizer remains an urgent need. To address this issue, molybdenum disulfide nanoflowers (MoS2 NF) as piezo-sonosensitizers and introduced sulfur vacancies on the MoS2 NF (Sv-MoS2 NF) to improve their piezoelectric property for cancer therapy are designed. Under ultrasonic mechanical stress, the Sv-MoS2 NF resulted in piezoelectric polarization and band tilting, which enhanced the charge carrier separation and migration. This resulted in an improved catalytic reaction for reactive oxygen species (ROS) production, ultimately enhancing the SDT performance. Thanks to the high efficiency of ROS generation, the Sv-MoS2 NF have demonstrated a good anticancer effect in vitro and in vivo. Following a systematic evaluation, Sv-MoS2 NF also demonstrated good biocompatibility. This novel piezo-sonosensitizer and vacancy engineering strategy provides a promising new approach for achieving efficient SDT.


Assuntos
Neoplasias , Terapia por Ultrassom , Humanos , Molibdênio , Espécies Reativas de Oxigênio , Neoplasias/terapia
19.
Nutrients ; 15(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37432277

RESUMO

The mode and mechanism of diabetic periodontitis-induced alveolar-osteocyte death are still unclear. This study aimed to investigate the occurrence of ferroptosis in alveolar osteocytes during diabetic periodontitis and the therapeutic potential of resveratrol to alleviate osteocyte ferroptosis. Diabetic periodontitis was induced in C57/BL6-male mice and treated with or without resveratrol. Periodontitis pathogenicity was analyzed by micro-CT and histology, and alveolar-osteocyte ferroptosis was analyzed by immunohistochemistry. MLOY4 osteocytes were treated with P. gingivalis-derived lipopolysaccharide (LPS)+advanced glycosylated end products (AGEs) mimicking diabetic periodontitis condition in vitro, with or without resveratrol or ferrostatin-1 (ferroptosis inhibitor). Osteocyte ferroptosis and expression of inflammatory mediators were analyzed. Diabetic periodontitis aggravated periodontitis pathogenicity and inhibited the expression of GPX4 and SLC7A11 in alveolar osteocytes and resveratrol alleviated these effects. LPS+AGEs triggered osteocyte ferroptosis in vitro as indicated by the downregulated GPX4 and SLC7A11, upregulated malondialdehyde, disrupted mitochondrial morphology, and overexpressed pro-inflammatory mediators IL-1ß, TNF-α, SOST, RANKL, and IL-6, and ferrostatin-1 or resveratrol treatment reversed these effects. LPS+AGEs upregulated pIKBα and pNF-κB p65 expression in osteocytes, and resveratrol or ferrostatin-1 reversed this effect. In conclusion, diabetic periodontitis triggers alveolar osteocyte ferroptosis possibly via disruption of the SLC7A11/GPX4 axis, and resveratrol has therapeutic potential to correct this biological event.


Assuntos
Diabetes Mellitus , Ferroptose , Periodontite , Masculino , Animais , Camundongos , Lipopolissacarídeos , Osteócitos , Resveratrol/farmacologia , Mediadores da Inflamação , Periodontite/tratamento farmacológico , Produtos Finais de Glicação Avançada
20.
Cancer Res ; 83(15): 2480-2495, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37272752

RESUMO

Hypermethylation of CpG islands (CGI) is a common feature of cancer cells and predominantly affects Polycomb-associated genomic regions. Elucidating the underlying mechanisms leading to DNA hypermethylation in human cancer could help identify chemoprevention strategies. Here, we evaluated the role of Polycomb complexes and 5-methylcytosine (5mC) oxidases in protecting CGIs from DNA methylation and observed that four genes coding for components of Polycomb repressive complex 1 (PRC1) are downregulated in tumors. Inactivation of RYBP, a key activator of variant PRC1 complexes, in combination with all three 5mC oxidases (TET proteins) in nontumorigenic bronchial epithelial cells led to widespread hypermethylation of Polycomb-marked CGIs affecting almost 4,000 target genes, which closely resembled the DNA hypermethylation landscape observed in human squamous cell lung tumors. The RYBP- and TET-deficient cells showed methylation-associated aberrant regulation of cancer-relevant pathways, including defects in the Hippo tumor suppressor network. Notably, the quadruple knockout cells acquired a transformed phenotype, including anchorage-independent growth and formation of squamous cell carcinomas in mice. This work provides a mechanism promoting hypermethylation of CGIs and shows that such hypermethylation can lead to cell transformation. The breakdown of a two-pronged protection mechanism can be a route towards genome-wide hypermethylation of CGIs in tumors. SIGNIFICANCE: Dysfunction of the Polycomb component RYBP in combination with loss of 5-methylcytosine oxidases promotes widespread hypermethylation of CpG islands in bronchial cells and induces tumorigenesis, resembling changes seen in human lung tumors.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Ilhas de CpG/genética , Oxirredutases/genética , 5-Metilcitosina/metabolismo , Metilação de DNA , Transformação Celular Neoplásica/genética , Carcinoma de Células Escamosas/genética , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Neoplasias Pulmonares/genética , DNA/metabolismo , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA