Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Redox Biol ; 73: 103195, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38781731

RESUMO

Accumulating oxidative damage is a primary driver of ovarian reserve decline along with aging. However, the mechanism behind the imbalance in reactive oxygen species (ROS) is not yet fully understood. Here we investigated changes in iron metabolism and its relationship with ROS disorder in aging ovaries of mice. We found increased iron content in aging ovaries and oocytes, along with abnormal expression of iron metabolic proteins, including heme oxygenase 1 (HO-1), ferritin heavy chain (FTH), ferritin light chain (FTL), mitochondrial ferritin (FTMT), divalent metal transporter 1 (DMT1), ferroportin1(FPN1), iron regulatory proteins (IRP1 and IRP2) and transferrin receptor 1 (TFR1). Notably, aging oocytes exhibited enhanced ferritinophagy and mitophagy, and consistently, there was an increase in cytosolic Fe2+, elevated lipid peroxidation, mitochondrial dysfunction, and augmented lysosome activity. Additionally, the ovarian expression of p53, p21, p16 and microtubule-associated protein tau (Tau) were also found to be upregulated. These alterations could be phenocopied with in vitro Fe2+ administration in oocytes from 2-month-old mice but were alleviated by deferoxamine (DFO). In vivo application of DFO improved ovarian iron metabolism and redox status in 12-month-old mice, and corrected the alterations in cytosolic Fe2+, ferritinophagy and mitophagy, as well as related degenerative changes in oocytes. Thereby in the whole, DFO delayed the decline in ovarian reserve and significantly increased the number of superovulated oocytes with reduced fragmentation and aneuploidy. Together, our findings suggest that aging-related disturbance in ovarian iron homeostasis contributes to excessive ROS production and that iron chelation may improve ovarian redox status, and efficiently delay the decline in ovarian reserve and oocyte quality in aging mice. These data propose a novel intervention strategy for preserving the ovarian reserve function in elderly women.


Assuntos
Envelhecimento , Ferro , Oócitos , Ovário , Oxirredução , Espécies Reativas de Oxigênio , Animais , Oócitos/metabolismo , Camundongos , Feminino , Ferro/metabolismo , Envelhecimento/metabolismo , Ovário/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Mitofagia , Peroxidação de Lipídeos , Microambiente Celular , Reserva Ovariana
2.
mBio ; 15(5): e0074124, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587427

RESUMO

Outbreaks of acute respiratory viral diseases, such as influenza and COVID-19 caused by influenza A virus (IAV) and SARS-CoV-2, pose a serious threat to global public health, economic security, and social stability. This calls for the development of broad-spectrum antivirals to prevent or treat infection or co-infection of IAV and SARS-CoV-2. Hemagglutinin (HA) on IAV and spike (S) protein on SARS-CoV-2, which contain various types of glycans, play crucial roles in mediating viral entry into host cells. Therefore, they are key targets for the development of carbohydrate-binding protein-based antivirals. This study demonstrated that griffithsin (GRFT) and the GRFT-based bivalent entry inhibitor GL25E (GRFT-L25-EK1) showed broad-spectrum antiviral effects against IAV infection in vitro by binding to HA in a carbohydrate-dependent manner and effectively protected mice from lethal IAV infection. Although both GRFT and GL25E could inhibit infection of SARS-CoV-2 Omicron variants, GL25E proved to be significantly more effective than GRFT and EK1 alone. Furthermore, GL25E effectively inhibited in vitro co-infection of IAV and SARS-CoV-2 and demonstrated good druggability, including favorable safety and stability profiles. These findings suggest that GL25E is a promising candidate for further development as a broad-spectrum antiviral drug for the prevention and treatment of infection or co-infection from IAV and SARS-CoV-2.IMPORTANCEInfluenza and COVID-19 are highly contagious respiratory illnesses caused by the influenza A virus (IAV) and SARS-CoV-2, respectively. IAV and SARS-CoV-2 co-infection exacerbates damage to lung tissue and leads to more severe clinical symptoms, thus calling for the development of broad-spectrum antivirals for combating IAV and SARS-CoV-2 infection or co-infection. Here we found that griffithsin (GRFT), a carbohydrate-binding protein, and GL25E, a recombinant protein consisting of GRFT, a 25 amino acid linker, and EK1, a broad-spectrum coronavirus inhibitor, could effectively inhibit IAV and SARS-CoV-2 infection and co-infection by targeting glycans on HA of IAV and spike (S) protein of SARS-CoV-2. GL25E is more effective than GRFT because GL25E can also interact with the HR1 domain in SARS-CoV-2 S protein. Furthermore, GL25E possesses favorable safety and stability profiles, suggesting that it is a promising candidate for development as a drug to prevent and treat IAV and SARS-CoV-2 infection or co-infection.


Assuntos
Antivirais , COVID-19 , Coinfecção , Vírus da Influenza A , Lectinas de Plantas , SARS-CoV-2 , Internalização do Vírus , Animais , Antivirais/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Camundongos , SARS-CoV-2/efeitos dos fármacos , Humanos , Internalização do Vírus/efeitos dos fármacos , Coinfecção/tratamento farmacológico , Coinfecção/virologia , Lectinas de Plantas/farmacologia , COVID-19/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Tratamento Farmacológico da COVID-19 , Cães , Camundongos Endogâmicos BALB C , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Células Madin Darby de Rim Canino
3.
Autophagy ; : 1-23, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38513669

RESUMO

PLD1 has been implicated in cytoskeletal reorganization and vesicle trafficking in somatic cells; however, its function remains unclear in oocyte meiosis. Herein, we found PLD1 stably expresses in mouse oocytes meiosis, with direct interaction with spindle, RAB11A+ vesicles and macroautophagic/autophagic vacuoles. The genetic or chemical inhibition of PLD1 disturbed MTOC clustering, spindle assembly and its cortical migration, also decreased PtdIns(4,5)P2, phosphorylated CFL1 (p-CFL1 [Ser3]) and ACTR2, and their local distribution on MTOC, spindle and vesicles. Furthermore in PLD1-suppressed oocytes, vesicle size was significantly reduced while F-actin density was dramatically increased in the cytoplasm, the asymmetric distribution of autophagic vacuoles was broken and the whole autophagic process was substantially enhanced, as illustrated with characteristic changes in autophagosomes, autolysosome formation and levels of ATG5, BECN1, LC3-II, SQSTM1 and UB. Exogenous administration of PtdIns(4,5)P2 or overexpression of CFL1 hyperphosphorylation mutant (CFL1S3E) could significantly improve polar MTOC focusing and spindle structure in PLD1-depleted oocytes, whereas overexpression of ACTR2 could rescue not only MTOC clustering, and spindle assembly but also its asymmetric positioning. Interestingly, autophagy activation induced similar defects in spindle structure and positioning; instead, its inhibition alleviated the alterations in PLD1-depleted oocytes, and this was highly attributed to the restored levels of PtdIns(4,5)P2, ACTR2 and p-CFL1 (Ser3). Together, PLD1 promotes spindle assembly and migration in oocyte meiosis, by maintaining rational levels of ACTR2, PtdIns(4,5)P2 and p-CFL1 (Ser3) in a manner of modulating autophagy flux. This study for the first time introduces a unique perspective on autophagic activity and function in oocyte meiotic development.Abbreviations: ACTR2/ARP2: actin related protein 2; ACTR3/ARP3: actin related protein 3; ATG5: autophagy related 5; Baf-A1: bafilomycin A1; BFA: brefeldin A; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GOLGA2/GM130: golgin A2; GV: germinal vesicle; GVBD: germinal vesicle breakdown; IVM: in vitro maturation; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MI: metaphase of meiosis I; MII: metaphase of meiosis II; MO: morpholino; MTOC: microtubule-organizing center; MTOR: mechanistic target of rapamycin kinase; PB1: first polar body; PLA: proximity ligation assay; PLD1: phospholipase D1; PtdIns(4,5)P2/PIP2: phosphatidylinositol 4,5-bisphosphate; RAB11A: RAB11A, member RAS oncogene family; RPS6KB1/S6K1: ribosomal protein S6 kinase B1; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TUBA/α-tubulin: tubulin alpha; TUBG/γ-tubulin: tubulin gamma; UB: ubiquitin; WASL/N-WASP: WASP like actin nucleation promoting factor.

4.
Phytochemistry ; 219: 113963, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171409

RESUMO

An investigation on the secondary metabolites from a rice culture broth of the endophytic fungus Neurospora terricola HDF-Br-2 derived from the vulnerable conifer Pseudotsuga gaussenii led to the isolation and characterization of 34 structurally diverse polyketides (1-34). Seven of them are previously undescribed, including five unprecedented dihydropyran-containing (terricoxanthones A-E, 1-5, resp.) and one rare tetrahydrofuran-containing (terricoxanthone F, 6) dimeric xanthones. The structures were elucidated by spectroscopic methods and single-crystal X-ray diffraction analyses. Terricoxanthones each were obtained as a racemic mixture. Their plausible biosynthetic relationships were briefly proposed. Compounds 6, aspergillusone A (8), and alatinone (27) displayed considerable inhibition against Candida albicans with MIC values of 8-16 µg/mL. 4-Hydroxyvertixanthone (12) and 27 exhibited significant inhibitory activities against Staphylococcus aureus, with MIC values of 4-8 µg/mL. Furthermore, compounds 8 and 27 could disrupt biofilm of S. aureus and C. albicans at 128 µg/mL. The findings not only extend the skeletons of xanthone dimers and contribute to the diversity of metabolites of endophytes associated with the endangered Chinese conifer P. gaussenii, but could further reveal the important role of protecting plant species diversity in support of chemical diversity and potential sources of new therapeutics.


Assuntos
Neurospora , Pseudotsuga , Traqueófitas , Xantonas , Staphylococcus aureus , Fungos , Xantonas/química , Estrutura Molecular , Testes de Sensibilidade Microbiana
6.
Cancer Gene Ther ; 31(3): 427-438, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072971

RESUMO

Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) is an immune checkpoint molecule with sequence homology to programmed cell death ligand 1 (PD-L1), which is mainly expressed on macrophages and tumor cells. However, whether Siglec-15-induced immunosuppression and poor prognosis are independent of PD-L1 remains unclear. In this study, we collected samples of 135 non-small cell lung cancers and found that Siglec-15 and PD-L1 expression were independent in non-small cell lung cancer by multiple immunofluorescence staining. Siglec-15 on macrophages (Mφ-Siglec-15) was significantly associated with DFS (p < 0.05) in PD-L1- patients with non-metastasis lung adenocarcinoma, not in PD-L1+ or lung squamous cell carcinoma patients. Moreover, stromal Siglec-15+ macrophages of Mφ-Siglec-15+PD-L1- patients were significantly more than those of Mφ-Siglec-15-PD-L1- patients (p = 0.002). We further found that Siglec-15+ macrophages polarized toward M2 and produced more IL-10, negatively associated with inflamed immunophenotype in PD-L1- patients and may inhibit CD8+T cells infiltration. In conclusion, PD-L1-independent Siglec-15+ macrophages contribute to the formation of an immunosuppressive microenvironment in non-metastasis lung adenocarcinoma patients, which may cause a higher risk of recurrence. Siglec-15 could be a potential target for normalizing cancer immunotherapy, benefiting patients who fail to respond to anti-PD-L1 therapy.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão/patologia , Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Microambiente Tumoral
7.
Med ; 5(1): 32-41.e5, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38070511

RESUMO

BACKGROUND: Recent outbreaks of avian influenza and ongoing virus reassortment have drawn focus on spill-over infections. The increase in human infections with highly pathogenic avian influenza H5N6 virus and its high fatality rate posed a potential threat, necessitating the search for a more effective treatment. METHODS: Longitudinal clinical data and specimens were collected from five H5N6 patients after admission. All patients received antiviral treatment of either sequential monotherapy of oseltamivir and baloxavir or the two drugs in combination. Severity of illness; viral load in sputum, urine, and blood; and cytokine levels in serum and sputum were serially analyzed. FINDINGS: All patients developed acute respiratory distress syndrome (ARDS) and viral sepsis within 1 week after disease onset. When delayed oseltamivir showed poor effects, baloxavir was administered and rapidly decreased viral load. In addition, levels of IL-18, M-CSF, IL-6, and HGF in sputum and Mig and IL-18 in serum that reflected ARDS and sepsis deterioration, respectively, were also reduced with baloxavir usage. However, three patients eventually died from exacerbation of underlying disease and secondary bacterial infection. Nonsurvivors had more severe extrapulmonary organ dysfunction and insufficient H5N6 virus-specific antibody response. CONCLUSIONS: For critical human cases of H5N6 infection, baloxavir demonstrated effects on viral load and pulmonary/extrapulmonary cytokines, even though treatment was delayed. Baloxavir could be regarded as a first-line treatment to limit continued viral propagation, with potential future application in avian influenza human infections and poultry workers exhibiting influenza-like illness. FUNDING: This work was funded by the National Natural Science Foundation of China (81761128014).


Assuntos
Dibenzotiepinas , Vírus da Influenza A , Influenza Aviária , Influenza Humana , Morfolinas , Piridonas , Síndrome do Desconforto Respiratório , Sepse , Triazinas , Animais , Humanos , Influenza Aviária/tratamento farmacológico , Influenza Aviária/epidemiologia , Oseltamivir/uso terapêutico , Virus da Influenza A Subtipo H5N6 , Interleucina-18/uso terapêutico , Influenza Humana/tratamento farmacológico , Influenza Humana/epidemiologia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Sepse/tratamento farmacológico
8.
Angew Chem Int Ed Engl ; 63(4): e202316315, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38030580

RESUMO

Covalent organic framework (COF) membranes featuring uniform topological structures and devisable functions, show huge potential in water purification and molecular separation. Nevertheless, the inability of uniform COF membranes to be produced on an industrial scale and their nonenvironmentally friendly fabrication method are the bottleneck preventing their industrial applications. Herein, we report a new green and industrially adaptable scraping-assisted interfacial polymerization (SAIP) technique to fabricate scalable and uniform TpPa COF membranes. The process used non-toxic and low-volatility ionic liquids (ILs) as organic phase instead of conventional organic solvents for interfacial synthesis of TpPa COF layer on a support membrane, which can simultaneously achieve the purposes of (i) improving the greenness of membrane-forming process and (ii) fabricating a robust membrane that can function beyond the conventional membranes. This approach yields a large-area, continuous COF membrane (19×25 cm2 ) with a thickness of 78 nm within a brief period of 2 minutes. The resulting membrane exhibited an unprecedented combination of high permeance (48.09 L m-2 h-1 bar-1 ) and antibiotic desalination efficiency (e.g., NaCl/adriamycin separation factor of 41.8), which is superior to the commercial benchmarking membranes.

9.
IEEE Trans Pattern Anal Mach Intell ; 46(5): 3692-3706, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38147423

RESUMO

Facial editing is to manipulate the facial attributes of a given face image. Nowadays, with the development of generative models, users can easily generate 2D and 3D facial images with high fidelity and 3D-aware consistency. However, existing works are incapable of delivering a continuous and fine-grained editing mode (e.g., editing a slightly smiling face to a big laughing one) with natural interactions with users. In this work, we propose Talk-to-Edit, an interactive facial editing framework that performs fine-grained attribute manipulation through dialog between the user and the system. Our key insight is to model a continual "semantic field" in the GAN latent space. 1) Unlike previous works that regard the editing as traversing straight lines in the latent space, here the fine-grained editing is formulated as finding a curving trajectory that respects fine-grained attribute landscape on the semantic field. 2) The curvature at each step is location-specific and determined by the input image as well as the users' language requests. 3) To engage the users in a meaningful dialog, our system generates language feedback by considering both the user request and the current state of the semantic field. We demonstrate the effectiveness of our proposed framework on both 2D and 3D-aware generative models. We term the semantic field for the 3D-aware models as "tri-plane" flow, as it corresponds to the changes not only in the color space but also in the density space. We also contribute CelebA-Dialog, a visual-language facial editing dataset to facilitate large-scale study. Specifically, each image has manually annotated fine-grained attribute annotations as well as template-based textual descriptions in natural language. Extensive quantitative and qualitative experiments demonstrate the superiority of our framework in terms of 1) the smoothness of fine-grained editing, 2) the identity/attribute preservation, and 3) the visual photorealism and dialog fluency. Notably, the user study validates that our overall system is consistently favored by around 80% of the participants.

10.
Cancers (Basel) ; 15(24)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38136422

RESUMO

Triple combination conversion therapy, involving transcatheter arterial chemoembolization (TACE) or hepatic arterial infusion chemotherapy (HAIC) combined with tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs), has shown an encouraging objective response rate (ORR) and successful conversion surgery rate in initially unresectable hepatocellular carcinoma (HCC). However, the safety and long-term survival outcomes of subsequent liver resection after successful conversion still remain to be validated. From February 2019 to February 2023, 726 patients were enrolled in this retrospective study (75 patients received hepatectomy after conversion therapy [CLR group], and 651 patients underwent pure hepatectomy [LR group]). Propensity score matching (PSM) was used to balance the preoperative baseline characteristics. After PSM, 68 patients in the CLR group and 124 patients in the LR group were analyzed, and all the matching variables were well-balanced. Compared with the LR group, the CLR group experienced longer Pringle maneuver time, longer operation time, and longer hospital stays. In addition, the CLR group had significantly higher incidence rates of intra-abdominal bleeding, biliary leakage, post-hepatectomy liver failure (PHLF), and Clavien-Dindo grade IIIa complications than the LR group. There were no significant statistical differences in overall survival (OS) (hazard ratio [HR] 0.724; 95% confidence interval [CI] 0.356-1.474; p = 0.374) and recurrence-free survival (RFS) (HR 1.249; 95% CI 0.807-1.934; p = 0.374) between the two groups. Liver resection following triple combination conversion therapy in initially unresectable HCC may achieve favorable survival outcomes with manageable safety profiles; presenting as a promising treatment option for initially unresectable HCC.

11.
Oncogene ; 42(46): 3407-3421, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37794134

RESUMO

High-mobility group box 1 (HMGB1) can enhance the stability and accessibility of nucleus binding sites to nucleosomes and transcription factors. Recently, HMGB1 has been recognized as a positive regulator of tumor glutamine, and its overexpression has been correlated with tumorigenesis and cancer progression. However, functions and mechanisms of HMGB1 in regulation of glycolysis during cancer progression in lung adenocarcinoma (LUAD) is still unclear. Here, we found that intracellular HMGB1 was consistently upregulated in LUAD specimens, and positively relevant to tumor grade and poor survival. HMGB1 facilitated glycolysis and promoted metastasis through physical interaction with SET and HAT1, forming HMGB1/SET/HAT1 complex that inhibited H3K9 and H3K27 acetylation in LUAD. The functional proteins complex coordinated histone modification to suppress the expression of SASH1, thus further facilitating glycolysis and inducing the metastasis in vitro and in vivo. Consistent with this, the expression of SASH1 was negatively correlated with HMGB1, SET and GLUT1, and positively correlated with HAT1 in human LUAD specimens. Clinically, LUAD patients with high expression of HMGB1 and low expression of SASH1 exhibited the worst clinical outcomes. Overall, the findings of this study revealed the critical role of HMGB1 in glycolysis and metastasis by attenuating H3K9ace and H3K27ace through physical interacted with SET and HAT1, which may facilitate future targeted therapies.


Assuntos
Adenocarcinoma de Pulmão , Proteína HMGB1 , Neoplasias Pulmonares , Humanos , Proteína HMGB1/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Histonas/metabolismo , Neoplasias Pulmonares/patologia , Glicólise/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Supressoras de Tumor/genética
12.
BMC Plant Biol ; 23(1): 453, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37752431

RESUMO

BACKGROUND: Color-leaved O. fragrans is a variety of Osmanthus fragrans, which has both the fragrance of Osmanthus and the color of color-leaved plants. However, the molecular mechanism of color change of color-leaved O. fragrans is not clear. In this study, we analyzed the regulatory mechanism of four different color leaves of 'Ziyan Gongzhu' through physiological, transcriptome and metabolome levels. RESULTS: Firstly, we measured the leaf pigments content and leaf chromatic parameters for correlation analysis, indicating a significant correlation between them. Overall, the content of chlorophyll a + b is low and the content of anthocyanin is high in T1 and T2 leaves, along with low expression of chlorophyll synthesis genes (HEMA, CHLG, and CAO, etc.) and high expression of anthocyanin synthesis genes (F3H, F3'H, DFR and ANS, etc.), resulting purple red and light purple in T1 and T2 leaves, respectively. It was also found that the pigment closely related to the color leaves of 'Ziyan Gongzhu' was cyanidin. The content anthocyanins, may be regulated by two putative MYB activators (OfMYB3 and OfMYB4) and two putative MYB repressors (OfMYB1 and OfMYB2). In contrast, the content of chlorophyll a + b is high and the content of anthocyanin is low in T3 and T4 leaves, along with high expression of chlorophyll synthesis genes and low expression of anthocyanin synthesis genes, resulting yellow green and dark green in T3 and T4 leaves, respectively. And abnormal chloroplast development affects chlorophyll content in T1, T2, and T3 leaves. Although the content of carotenoids first dropped in T2 leaves, it then rapidly accumulated in T4 leaves, in sync with the increase in the expression of genes related to carotenoid biosynthesis (ZDS, LHYB, and ZEP, for example). Analysis of photosynthetic, carbohydrate and hormone-related differentially abundant metabolites (DAMs) and DEGs found that they may participate in the regulation of leaf color change of 'Ziyan Gongzhu' by affecting pigment synthesis. CONCLUSION: Our results pave the way for a comprehensive knowledge of the regulatory processes governing leaf color in 'Ziyan Gongzhu' and identify possible genes for application regarding molecular colored-leaf cultivar breeding.


Assuntos
Antocianinas , Transcriptoma , Antocianinas/metabolismo , Clorofila A/metabolismo , Perfilação da Expressão Gênica , Clorofila/metabolismo , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas , Cor
13.
J Transl Med ; 21(1): 599, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674198

RESUMO

BACKGROUND: Sialic acid-binding immunoglobulin-like lectin-15 (Siglec-15) has emerged as a novel immunotherapy candidate, which deserves a comprehensive investigation in lung adenocarcinoma (LUAD). METHODS: Multiplex fluorescence-based immunohistochemistry was conducted to assess Siglec-15 expression and tumor-infiltrating immune cells in LUAD from Tianjin cohort, with validation cohorts Xinchao 04 and 07. RESULTS: This study revealed that Siglec-15 was positively correlated with CD8+ T cells and tumor-associated macrophages (TAMs) infiltration, but CD8+ T cells were mostly infiltrated in the stroma area, not in the tumor area. Spatially, fewer CD8+ T cells surrounded Siglec-15+ tumor cells in PD-L1- cells, and more TAMs surrounded Siglec-15+ tumor cells in PD-L1-/+ cells. Siglec-15+ TAMs infiltrated with more CD8+ T cells, and were closer to CD8+ T cells than Siglec-15- TAMs and Siglec-15+ tumor cells. Siglec-15+ TAMs infiltrated with more Tregs and were closer to Tregs than Siglec-15+ tumor cells. Siglec-15+ tumor cells or TAMs reversed CD8+ T cells prognosis value, and enhanced the prognosis value of Tregs and TAMs. The immunotyping based on Siglec-15 and CD8A / CD8+ T cells revealed that patients with high CD8A and Siglec-15 expression exhibited immune activation. Patients with low CD8A expression / CD8+ T cells infiltration and Siglec-15 overexpression were related to the activation of immunosuppressive signature and metabolism-related pathway, and infiltrated with more TAMs. CONCLUSIONS: We revealed the distinct characteristics between Siglec-15+ tumor cells and TAMs in relation to CD8+ T cells, and a unique relationship between Siglec-15 and immunosuppressive TIME in LUAD, which may provide potential value for anti-Siglec-15 therapy.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Antígeno B7-H1 , Linfócitos T CD8-Positivos , Fluorescência
14.
Biomolecules ; 13(9)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37759683

RESUMO

The peptide-based pan-coronavirus fusion inhibitor EK1 is in phase III clinical trials, and it has, thus far, shown good clinical application prospects against SARS-CoV-2 and its variants. To further improve its in vivo long-acting property, we herein developed an Fc-binding strategy by conjugating EK1 with human immunoglobulin G Fc-binding peptide (IBP), which can exploit the long half-life advantage of IgG in vivo. The newly engineered peptide IBP-EK1 showed potent and broad-spectrum inhibitory activity against SARS-CoV-2 and its variants, including various Omicron sublineages and other human coronaviruses (HCoVs) with low cytotoxicity. In mouse models, IBP-EK1 possessed potent prophylactic and therapeutic efficacy against lethal HCoV-OC43 challenge, and it showed good safety profile and low immunogenicity. More importantly, IBP-EK1 exhibited a significantly extended in vivo half-life in rhesus monkeys of up to 37.7 h, which is about 20-fold longer than that reported for EK1. Strikingly, IBP-EK1 displayed strong in vitro or ex vivo synergistic anti-HCoV effect when combined with monoclonal neutralizing antibodies, including REGN10933 or S309, suggesting that IBP-conjugated EK1 can be further developed as a long-acting, broad-spectrum anti-HCoV agent, either alone or in combination with neutralizing antibodies, to combat the current COVID-19 pandemic or future outbreaks caused by emerging and re-emerging highly pathogenic HCoVs.

15.
Adv Sci (Weinh) ; 10(19): e2207118, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37203277

RESUMO

Tyrosine kinase inhibitors represented by sorafenib are the first-line treatment for hepatocellular carcinoma (HCC), but the low response rate of HCC patient has become a clinical pain-point. Emerging evidences have revealed that metabolic reprogramming plays an important role in regulating the sensitivity of tumor cells to various chemotherapeutics including sorafenib. However, the underlying mechanisms are very complex and are not fully elucidated. By comparing the transcriptome sequencing data of sorafenib-sensitive and -insensitive HCC patients, it is revealed that cofilin 1 (CFL1) is highly expressed in the tumor tissues of sorafenib-insensitive HCC patients and closely correlated with their poor prognosis. Mechanically, CFL1 can promote phosphoglycerate dehydrogenase transcription and enhance serine synthesis and metabolism to accelerate the production of antioxidants for scavenging the excessive reactive oxygen species induced by sorafenib, thereby impairing the sorafenib sensitivity of HCC. To translate this finding and consider the severe side effects of sorafenib, a reduction-responsive nanoplatform for systemic co-delivery of CFL1 siRNA (siCFL1) and sorafenib is further developed, and its high efficacy in inhibiting HCC tumor growth without apparent toxicity is demonstrated. These results indicate that nanoparticles-mediated co-delivery of siCFL1 and sorafenib can be a new strategy for the treatment of advanced HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Cofilina 1 , Linhagem Celular Tumoral
16.
Healthcare (Basel) ; 11(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36981565

RESUMO

There is growing interest in the relationship between neighborhood social capital and the health of urban older people, but existing research still falls short in exploring the relationship between the two. Based on 2018 CHARLS data, this paper quantitatively examines the association between neighborhood social capital and the self-rated health of urban older people. The study found that, after controlling for a series of variables, both increased social interaction and increased frequency of social interaction significantly improved urban older people's self-rated health. To implement the Health China strategy and improve the health of urban older people, further attention should be paid to the role of neighborhood social capital, creating a harmonious environment for neighborhood interaction and promoting the cultivation of neighborhood social capital.

17.
J Med Virol ; 95(3): e28641, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890632

RESUMO

Numerous emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants have shown significant immune evasion capacity and caused a large number of infections, as well as vaccine-breakthrough infections, especially in elderly populations. Recently emerged Omicron XBB was derived from the BA.2 lineage, but bears a distinct mutant profile in its spike (S) protein. In this study, we found that Omicron XBB S protein drove more efficient membrane-fusion kinetics on human lung-derived cells (Calu-3). Considering the high susceptibility of the elderly to the current Omicron pandemic, we performed a comprehensive neutralization assessment of elderly convalescent or vaccine sera against XBB infection. We found that the sera from elderly convalescent patients who experienced with BA.2 infection or breakthrough infection potently inhibited BA.2 infection, but showed significantly reduced efficacy against XBB. Moreover, recently emerged XBB.1.5 subvariant also showed more significant resistance to the convalescent sera of BA.2- or BA.5-infected elderly. On the other hand, we found that the pan-CoV fusion inhibitors EK1 and EK1C4 can potently block either XBB-S- or XBB.1.5-S-mediated fusion process and viral entry. Moreover, EK1 fusion inhibitor showed potent synergism when combined with convalescent sera of BA.2- or BA.5-infected patients against XBB and XBB.1.5 infection, further indicating that EK1-based pan-CoV fusion inhibitors are promising candidates for development as clinical antiviral agents to combat the Omicron XBB subvariants.


Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Humanos , SARS-CoV-2/genética , Evasão da Resposta Imune , Soroterapia para COVID-19 , Antirretrovirais , Infecções Irruptivas , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
18.
Acta Pharm Sin B ; 13(3): 967-981, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36970197

RESUMO

Platinum-based chemotherapy resistance is a key factor of poor prognosis and recurrence in hepatocellular carcinoma (HCC). Herein, RNAseq analysis revealed that elevated tubulin folding cofactor E (TBCE) expression is associated with platinum-based chemotherapy resistance. High expression of TBCE contributes to worse prognoses and earlier recurrence among liver cancer patients. Mechanistically, TBCE silencing significantly affects cytoskeleton rearrangement, which in turn increases cisplatin-induced cycle arrest and apoptosis. To develop these findings into potential therapeutic drugs, endosomal pH-responsive nanoparticles (NPs) were developed to simultaneously encapsulate TBCE siRNA and cisplatin (DDP) to reverse this phenomena. NPs (siTBCE + DDP) concurrently silenced TBCE expression, increased cell sensitivity to platinum treatment, and subsequently resulted in superior anti-tumor effects both in vitro and in vivo in orthotopic and patient-derived xenograft (PDX) models. Taken together, NP-mediated delivery and the co-treatment of siTBCE + DDP proved to be effective in reversing chemotherapy resistance of DDP in multiple tumor models.

19.
Plants (Basel) ; 12(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36771647

RESUMO

Broussonetia papyrifera is rich in flavonoids, which have significant antioxidant, antibacterial, and anti-inflammatory activities and certain pharmacological activities. Nevertheless, scarce transcriptome resources of B. papyrifera have impeded further study regarding the process of its production and accumulation. In this study, RNA-seq was utilized to evaluate the gene expression of B. papyrifera leaves at three distinct developmental phases (T1: young leaves, T3: immature leaves, T4: matured leaves). We obtained 2447 upregulated and 2960 downregulated DEGs, 4657 upregulated and 4804 downregulated DEGs, and 805 upregulated and 484 downregulated DEGs from T1 vs. T3, T1 vs. T4, and T3 vs. T4, respectively. Further research found that the following variables contributed to the formation of flavonoids in the leaves of B. papyrifera: Several important enzyme genes involved in flavonoid production pathways have been discovered. The results demonstrated that the dynamic changing trend of flavonoid contents is related to the expression pattern of the vast majority of essential genes in the biosynthetic pathway. Genes associated in energy and glucose metabolism, polysaccharide, cell wall and cytoskeleton metabolism, signal transduction, and protein and amino acid metabolism may affect the growth and development of B. papyrifera leaves, and eventually their flavonoid content. This study's results offer a strong platform for future research into the metabolic pathways of B. papyrifera.

20.
Emerg Microbes Infect ; 12(1): 2178241, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36748716

RESUMO

Continuous emergence of the Omicron variant, along with its subvariants, has caused an increasing number of infections, reinfections, and vaccine-breakthrough infections, seriously threatening human health. Recently, several new Omicron subvariants, such as BA.5, BA.2.75, BA.4.6, and BF.7, bearing distinct mutation profiles in their spike (S) proteins, have significantly increased their capacity to evade vaccine-induced immunity and have shown enhanced infectivity and transmissibility, quickly becoming dominant sublineages. In this study, we found the S proteins of these Omicron subvariants to have 2- to 4-fold more efficient membrane fusion kinetics than that of the original Omicron variant (BA.1), indicating that these novel Omicron subvariants might possess increased pathogenicity. We also identified that peptide-based pan-CoV fusion inhibitors, EK1 and EK1C4, showed equal efficacy against membrane fusion mediated by S proteins of the noted Omicron subvariants and infection by their pseudoviruses. Additionally, either immune sera induced by wild-type (WT) SARS-CoV-2 RBD-based vaccine or BA.2 convalescent sera showed potent synergism with EK1 against both WT SARS-CoV-2 and various Omicron subvariants, further suggesting that EK1-based fusion inhibitors are promising candidates for development as clinical antiviral agents against the currently circulating Omicron subvariants.


Assuntos
COVID-19 , Humanos , Soroterapia para COVID-19 , SARS-CoV-2 , Antirretrovirais , Vacinas contra COVID-19 , Glicoproteína da Espícula de Coronavírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA