Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158632

RESUMO

Vaccinia virus (VACV)-induced cell migration is thought to be closely related to the rapid transmission of viral infection in the body. The limited studies are mainly based on scratch assay using traditional cell culture techniques, which inevitably ignores the influences of extracellular microenvironment. Physical confinement, inherently presenting in vivo, has proven to be a critical extern cue in modulating migration behaviors of multiple cells, while its impacts on VACV-induced cell motility remain unclear. Herein, we developed a migration assay microchip featuring confined microchannel array to investigate the effect of physical confinement on infected cell morphology and motility during VACV infection. Results showed that different from the random cell migration observed in traditional scratch assay on planar substrate, VACV-infected cells exhibited accelerated directionally persistent migration under confinement microenvironment. Moreover, single-directed elongated dominant lamella appeared to contrast distinctly with multiple protrusions stretched in random directions under unconfined condition. Additionally, the Golgi complex tended to relocate behind the nucleus confined within the microchannel axis compared to the classical reorientation pattern. These differences in characteristic subcellular architecture and organelle reorientation of migrating cells revealed cell biological mechanisms underlying altered migration behavior. Collectively, our study demonstrates that physical confinement acting as a guidance cue has profound impacts on VACV-induced migration behaviors, which provides new insight into cell migration behavior and viral rapid spread during VACV infection.

2.
ACS Pharmacol Transl Sci ; 7(1): 249-258, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38230279

RESUMO

It is crucial to develop universal inhibitors for viral inhibition due to the rapid mutation of viruses. Herein, a universal aptamer inhibitor was developed that enabled a single DNA molecule to recognize several hemeagglutinin (HA) protein subtypes, inducing broad neutralization against influenza A viruses (IAVs). Through a multi-channel enrichment (MCE) strategy, a high-affinity aptamer named UHA-2 was obtained, with its dissociation constants (Kd) for three different HA proteins being 1.5 ± 0.2 nM (H5N1), 3.7 ± 0.4 nM (H7N9), and 10.1 ± 1.1 nM (H9N2). The UHA-2 aptamer had a universal inhibition effect, by which it could broadly neutralize influenza A H5N1, H7N9, H9N2, H1N1, and H3N2 viruses. Universal aptamer inhibitors have the advantages of acquisition in vitro, stability, simple structure, small size, etc. This study not only develops a novel universal aptamer to achieve a broad inhibition effect on various IAVs, but also opens up an efficient strategy for the development of universal inhibitors against viruses.

3.
Lab Chip ; 23(19): 4255-4264, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37674367

RESUMO

Influenza A viruses typically cause acute respiratory infections in humans. However, virus-induced acute kidney injury (AKI) has dramatically increased mortality. The pathogenesis remains poorly understood due to limited disease models. Here, a distal renal tubular system-on-a-chip (dRTSC) was constructed to explore the pathogenesis. The renal tubule-vascular reabsorption interface was recapitulated by co-culturing the distal renal tubule and peritubular vessel with a collagen-coated porous membrane. To study the pathways of influenza virus entry into the kidney, dynamic tracking of fluorescence-labeled virus-infected blood vessels was performed. For the first time, the virus was shown to enter the kidney rapidly by cell-free transmission without disrupting the vascular barrier. Direct virus infection of renal tubules in dRTSC reveals disruption of tight junctions, microvilli formation, polar distribution of ion transporters, and sodium reabsorption function. This robust platform allows for a straightforward investigation of virus-induced AKI pathogenesis. The combination with single-virus tracking technology provides new insights into understanding influenza virus-induced extra-respiratory disease.


Assuntos
Injúria Renal Aguda , Vírus da Influenza A , Humanos , Túbulos Renais Distais , Injúria Renal Aguda/etiologia , Técnicas de Cocultura , Dispositivos Lab-On-A-Chip
4.
Anal Chem ; 94(23): 8392-8398, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35657751

RESUMO

Single-nanoparticle collision electrochemistry (SNCE) has gradually become an attractive analytical method due to its advantages in analytical detection, such as a fast response, low cost, low sample consumption, and in situ real-time detection of analytes. However, the biological analyte's direct detection based on the SNCE blocking mode has the problems of low sensitivity and specificity. In this work, an SNCE biosensor based on SNCE electrocatalytic strategy was used for the detection of H7N9 AIV. Nucleic acid aptamers were introduced to recognize the target virus (H7N9 AIV). After the recognition event, ssDNA1 was released and hybridized with another ssDNA2. Owing to the nicking endonuclease Nt.AlwI-mediated target nucleic acid cyclic amplification, one virus particle can indirectly induce the release of 4.2 × 106 Au NPs that can be counted by the SNCE electrocatalytic strategy. The high conversion efficiency greatly improved the detection sensitivity, and the detection limit was as low as 24.3 fg/mL. Therefore, the constructed biosensor can achieve a highly sensitive and specific detection of H7N9 AIV and show a great potential in bioanalytical application.


Assuntos
Técnicas Biossensoriais , Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Nanopartículas , Ácidos Nucleicos , Animais , Técnicas Biossensoriais/métodos , Eletroquímica
5.
Lab Chip ; 21(22): 4414-4426, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34676383

RESUMO

Among the numerous forms of cancer immunotherapy, cancer vaccines have attracted increasing attention because of their ability to elicit sustained antitumor immune responses and durable tumor regression. Here, a personalized gel-droplet monocyte vaccine (GEMA) derived from host blood was reported. A streamlined microfluidic vaccine production platform was designed to combine the separation of monocytes from host blood and the encapsulation of monocytes in an alginate gel droplet, which simplified the handling of the blood product and permitted the rapid preparation of vaccines. In addition, the application of alginate gel encapsulation not only improved the efficiency of antigen uptake by monocytes, but it also promoted the production of antigen-specific CD8+ T cells in the spleen, resulting in an intense cytotoxic T lymphocyte (CTL) response. Moreover, depending on the disease profile of a specific patient, different adjuvant- and antigen-loaded monocytes could be simultaneously encapsulated in gel droplets to prepare a cocktail vaccine based on patient needs. In this study, anti-PD-1 antibodies were encapsulated in gel droplets as a model adjuvant to obtain a cocktail vaccine, and this demonstrated enhanced antitumor efficacy in a 4T1 breast tumor model. In summary, this study provided a unique vaccine production strategy and an efficient combination therapy approach, holding great promise for the development of personalized cancer vaccines.


Assuntos
Neoplasias da Mama , Vacinas Anticâncer , Alginatos , Linfócitos T CD8-Positivos , Células Dendríticas , Feminino , Humanos , Imunoterapia , Monócitos
6.
Anal Chem ; 93(3): 1757-1763, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33373183

RESUMO

An ultrasensitive electrochemiluminescence (ECL) biosensor was proposed based on a closed bipolar electrode (BPE) for the detection of alkaline phosphatase (ALP). For most of the BPE-ECL biosensors, an effective signal amplification strategy was the key to enhance the sensitivity of the system. Herein, the signal amplification strategy of the enzyme catalysis was utilized in the BPE-ECL system. Au nanoparticles (NPs) were electrodeposited on the cathode surface of the ITO electrode to improve the stability and sensitivity of the signal. Compared with the previous BPE-ECL biosensors, the sensitivity was increased by at least 3 orders of magnitude. The biosensor showed high sensitivity and specificity of ALP detection with a detection limit of as low as 3.7 aM. Besides, it was further applied to the detection of ALP in different types of cells and successfully realized ALP detection in single Hep G2 cell, which had a huge application prospect in single biomolecule detection or single cell analysis.


Assuntos
Fosfatase Alcalina/análise , Técnicas Biossensoriais , Técnicas Eletroquímicas , Medições Luminescentes , Análise de Célula Única , Fosfatase Alcalina/metabolismo , Eletrodos , Ouro/química , Células Hep G2 , Humanos , Nanopartículas Metálicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA