Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 930: 172612, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38663602

RESUMO

Mangroves develop under environmental conditions and anthropogenic pressures whose impact on benthic meiofauna remains poorly understood. It is unclear how meiofauna communities are structured according to local sedimentary conditions. This study was designed to characterize the community structure of meiofauna and nematodes (dominant taxa) and the associated environmental forcings in intertidal mangrove sediments from Mayotte (Indo-West-Pacific), Martinique and Guadeloupe (Caribbean). Sediment cores were sampled at the end of the dry season at low tide on adult mangrove stands with similar immersion time. In each sediment layer, we analyzed redox potential, pH, porewater salinity, grain size, organic matter, metals, organic contaminants, prokaryotes and meiofauna. Our results show that sediments far from cities and agricultural fields trapped site-specific contaminants due to local water transport processes. Some metals, PAHs or pesticides exceeded toxicity thresholds in most of the studied stations, thus being harmful to benthic fauna. The sedimentary environment acts as a filter selecting specific meiofauna communities at station scale only in the Caribbean. In Mayotte, horizontal homogeneity contrasts with vertical heterogeneity of the sedimentary environment and the meiofauna. Nematode genera showed particular distribution patterns horizontally and vertically, suggesting the presence of sediment patches suitable for a restricted pool of genera on each island. Results in the Caribbean are consistent with nested diversity patterns due to environmental filtering. Conversely, horizontal homogeneity at Mayotte would reflect greater dispersal between stations or more spatially homogeneous anthropogenic pressures. The nematode genera present at depth may not be the most specialized, but the most versatile, capable of thriving in different conditions. Terschellingia and Daptonema showed contrasted responses to environmental forcing, likely due to their versatility, while Desmodora showed uniform responses between study areas, except when toxicity thresholds were exceeded. Our results emphasize that a given genus of nematode may respond differently to sedimentary conditions depending on sites.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Nematoides , Áreas Alagadas , Animais , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Região do Caribe , Guadalupe , Invertebrados
2.
Sci Total Environ ; 912: 168692, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38008320

RESUMO

The microphytobenthos (MPB), a microbial community of primary producers, play a key role in coastal ecosystem functioning, particularly in intertidal mudflats. These mudflats experience challenging variations of irradiance, forcing the micro-organisms to develop photoprotective mechanisms to survive and thrive in this dynamic environment. Two major adaptations to light are well described in literature: the excess of light energy dissipation through non-photochemical quenching (NPQ), and the vertical migration in the sediment. These mechanisms trigger considerable scientific interest, but the biological processes and metabolic mechanisms involved in light-driven vertical migration remain largely unknown. To our knowledge, this study investigates for the first time metabolomic responses of a migrational mudflat biofilm exposed for 30 min to a light gradient of photosynthetically active radiation (PAR) from 50 to 1000 µmol photons m-2 s-1. The untargeted metabolomic analysis allowed to identify metabolites involved in two types of responses to light irradiance levels. On the one hand, the production of SFAs and MUFAs, primarily derived from bacteria, indicates a healthy photosynthetic state of MPB under low light (LL; 50 and 100 PAR) and medium light (ML; 250 PAR) conditions. Conversely, when exposed to high light (HL; 500, 750 and 1000 PAR), the MPB experienced light-induced stress, triggering the production of alka(e)nes and fatty alcohols. The physiological and ecological roles of these compounds are poorly described in literature. This study sheds new light on the topic, as it suggests that these compounds may play a crucial and previously unexplored role in light-induced stress acclimation of migrational MPB biofilms. Since alka(e)nes are produced from FAs decarboxylation, these results thus emphasize for the first time the importance of FAs pathways in microphytobenthic biofilms acclimation to light.


Assuntos
Ecossistema , Meio Ambiente , Fotossíntese/fisiologia , Biofilmes , Aclimatação
3.
Mar Biol ; 170(4): 47, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968429

RESUMO

Fatty acids and carotenoids are known to have roles in embryonic and larval development of sea cucumbers, but their changes in gonads during gametogenesis have not yet been studied. To improve our knowledge of the reproductive cycle of sea cucumbers in an aquaculture perspective, we collected 6-11 individuals of the species Holothuria (Panningothuria) forskali Delle Chiaje, 1823 approximately every 2 months from December 2019 to July 2021 east of the Glenan Islands (Brittany - France; 47.710°N, 3.948°W) at a depth of 8-12 m. Our results show that soon after spawning, sea cucumbers take advantage of an increased food availability in spring to rapidly and opportunistically accumulate nutrients in the form of lipids in their gonads (from May to July) and then slowly elongate, desaturate and probably rearrange fatty acids within lipid classes for the next reproductive season according to the specific requirements of both sexes. In contrast, acquisition of carotenoids occurs synchronously with gonads filling and/or through the reabsorption of spent tubules (T5), thus revealing little seasonal variations at the scale of the entire gonad in terms of relative abundance in both sexes. All results suggest that gonads are fully replenished with nutrients by October and that broodstock for induced reproduction could be captured at this moment and kept until the production of larvae is required. Maintaining broodstock for consecutive years would probably be a higher level challenge as the dynamics of tubule recruitment are not fully understood and seem to last for several years. Supplementary Information: The online version contains supplementary material available at 10.1007/s00227-023-04198-0.

4.
Mar Pollut Bull ; 185(Pt B): 114348, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36435024

RESUMO

The microphytobenthos that form transient biofilms are important primary producers in intertidal, depositional habitats, yet we have only a limited understanding of how they respond to the cumulative impacts of the growing range of anthropogenic stressors to which they are exposed. We know even less about how the temporal alignment of exposure - such as duration and exposure sequence - may affect the response. Estuarine biofilms were cultured in mesocosms and exposed to the herbicide glyphosate and titanium dioxide (TiO2) nanoparticles in different sequences (glyphosate-first or TiO2-first), as well as in the presence and absence of physical disturbance. We found that at environmentally realistic chemical concentrations, the order of exposure was less important than the total stressor scenario in terms of impacts on key functional attributes and diatom community structure. Physical disturbance did not have an impact on functional attributes, regardless of exposure sequence.


Assuntos
Diatomáceas , Herbicidas , Nanopartículas , Herbicidas/toxicidade , Biofilmes
5.
Sci Total Environ ; 825: 153942, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35189234

RESUMO

The rivers of Guadeloupe and Martinique (French West Indies) show high levels of chlordecone (CLD) contamination. This persistent molecule has a dramatic impact on both aquatic ecosystems and human health. In these rivers, epilithic biofilms are the main endogenous primary producers and represent a central food source for fish and crustaceans. Recently, their viscoelastic properties have been shown to be effective in bio-assessing pollution in tropical environments. As these properties are closely related to the biochemical composition of the biofilms, biochemical (fatty acids, pigments, extracellular polymeric substances (EPS) monosaccharides) and molecular markers (T-RFLP fingerprints of bacteria, archaea and eukaryotes) were investigated. Strong links between CLD pollution and both biofilm biochemistry and microbial community composition were found. In particular, high levels of CLD were linked with modified exo-polysaccharides corresponding to carbohydrates with enhanced adsorption and adhesion properties. The observed change probably resulted from a preferential interaction between CLD and sugars and/or a differential microbial secretion of EPS in response to the pollutant. These changes were expected to impact viscoelastic properties of epilithic biofilms highlighting the effect of CLD pollution on biofilm EPS matrix. They also suggested that microorganisms implement a CLD scavenging strategy, providing new insights on the role of EPS in the adaptation of microorganisms to CLD-polluted environments.


Assuntos
Clordecona , Inseticidas , Adsorção , Animais , Biofilmes , Clordecona/análise , Ecossistema , Inseticidas/análise
6.
Sci Total Environ ; 807(Pt 1): 150667, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34599952

RESUMO

The microbial communities inhabiting the Atlantic-East Pacific (AEP) mangroves have been poorly studied, and mostly comprise chronically polluted mangroves. In this study, we characterized changes in the structure and diversity of microbial communities of mangroves along the urban-to-rural gradient of the Cayenne estuary (French Guiana, South America) that experience low human impact. The microbial communities were assigned into 50 phyla. Proteobacteria, Chloroflexi, Acidobacteria, Bacteroidetes, and Planctomycetes were the most abundant taxa. The environmental determinants found to significantly correlated to the microbial communities at these mangroves were granulometry, dieldrin concentration, pH, and total carbon (TC) content. Furthermore, a precise analysis of the sediment highlights the existence of three types of anthropogenic pressure among the stations: (i) organic matter (OM) enrichment due to the proximity to the city and its wastewater treatment plant, (ii) dieldrin contamination, and (iii) naphthalene contamination. These forms of weak anthropogenic pressure seemed to impact the bacterial population size and microbial assemblages. A decrease in Bathyarchaeota, "Candidatus Nitrosopumilus", and Nitrospira genera was observed in mangroves subjected to OM enrichment. Mangroves polluted with organic contaminants were enriched in Desulfobacteraceae, Desulfarculaceae, and Acanthopleuribacteraceae (with dieldrin or polychlorobiphenyl contamination), and Chitinophagaceae and Geobacteraceae (with naphthalene contamination). These findings provide insights into the main environmental factors shaping microbial communities of mangroves in the AEP that experience low human impact and allow for the identification of several potential microbial bioindicators of weak anthropogenic pressure.


Assuntos
Microbiota , Efeitos Antropogênicos , Biomarcadores Ambientais , Estuários , Guiana Francesa , Sedimentos Geológicos , Humanos , Planctomicetos , Áreas Alagadas
7.
Proc Biol Sci ; 288(1959): 20211779, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34583582

RESUMO

Some sea slugs are able to steal functional chloroplasts (kleptoplasts) from their algal food sources, but the role and relevance of photosynthesis to the animal host remain controversial. While some researchers claim that kleptoplasts are slowly digestible 'snacks', others advocate that they enhance the overall fitness of sea slugs much more profoundly. Our analysis shows light-dependent incorporation of 13C and 15N in the albumen gland and gonadal follicles of the sea slug Elysia timida, representing translocation of photosynthates to kleptoplast-free reproductive organs. Long-chain polyunsaturated fatty acids with reported roles in reproduction were produced in the sea slug cells using labelled precursors translocated from the kleptoplasts. Finally, we report reduced fecundity of E. timida by limiting kleptoplast photosynthesis. The present study indicates that photosynthesis enhances the reproductive fitness of kleptoplast-bearing sea slugs, confirming the biological relevance of this remarkable association between a metazoan and an algal-derived organelle.


Assuntos
Gastrópodes , Aptidão Genética , Animais , Cloroplastos/metabolismo , Fotossíntese
8.
Sci Rep ; 10(1): 17309, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057038

RESUMO

Chlordecone (CLD) levels measured in the rivers of the French West Indies were among the highest values detected worldwide in freshwater ecosystems, and its contamination is recognised as a severe health, environmental, agricultural, economic, and social issue. In these tropical volcanic islands, rivers show strong originalities as simplified food webs, or numerous amphidromous migrating species, making the bioindication of contaminations a difficult issue. The objective of this study was to search for biological responses to CLD pollution in a spatially fixed and long-lasting component of the rivers in the West Indies: the epilithic biofilm. Physical properties were investigated through complementary analyses: friction, viscosity as well as surface adhesion were analyzed and coupled with measures of biofilm carbon content and exopolymeric substance (EPS) production. Our results have pointed out a mesoscale chemical and physical reactivity of the biofilm that can be correlated with CLD contamination. We were able to demonstrate that epilithic biofilm physical properties can effectively be used to infer freshwater environmental quality of French Antilles rivers. The friction coefficient is reactive to contamination and well correlated to carbon content and EPS production. Monitoring biofilm physical properties could offer many advantages to potential users in terms of effectiveness and ease of use, rather than more complex or time-consuming analyses.

9.
Mar Drugs ; 18(8)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32708010

RESUMO

Kelps are colonized by a wide range of microbial symbionts. Among them, endophytic fungi remain poorly studied, but recent studies evidenced yet their high diversity and their central role in algal defense against various pathogens. Thus, studying the metabolic expressions of kelp endophytes under different conditions is important to have a better understanding of their impacts on host performance. In this context, fatty acid composition is essential to a given algae fitness and of interest to food web studies either to measure its nutritional quality or to infer about its contribution to consumers diets. In the present study, Paradendryphiella salina, a fungal endophyte was isolated from Saccharina latissima (L.) and Laminaria digitata (Hudson.) and its fatty acid composition was assessed at increasing salinity and temperature conditions. Results showed that fungal composition in terms of fatty acids displayed algal-dependent trajectories in response to temperature increase. This highlights that C18 unsaturated fatty acids are key components in the host-dependant acclimation of P. salina to salinity and temperature changes.


Assuntos
Ascomicetos/metabolismo , Endófitos/metabolismo , Ácidos Graxos/metabolismo , Laminaria/microbiologia , Temperatura , Ascomicetos/isolamento & purificação , Endófitos/isolamento & purificação , Interações Hospedeiro-Patógeno , Laminaria/metabolismo , Salinidade , Tolerância ao Sal , Termotolerância
10.
Sci Rep ; 10(1): 10548, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601288

RESUMO

Some sacoglossan sea slugs incorporate intracellular functional algal chloroplasts, a process termed kleptoplasty. "Stolen" chloroplasts (kleptoplasts) can remain photosynthetically active up to several months, contributing to animal nutrition. Whether this contribution occurs by means of translocation of photosynthesis-derived metabolites from functional kleptoplasts to the animal host or by simple digestion of such organelles remains controversial. Imaging of 13C and 15N assimilation over a 12-h incubation period of Elysia viridis sea slugs showed a light-dependent incorporation of carbon and nitrogen, observed first in digestive tubules and followed by a rapid accumulation into chloroplast-free organs. Furthermore, this work revealed the presence of 13C-labeled long-chain fatty acids (FA) typical of marine invertebrates, such as arachidonic (20:4n-6) and adrenic (22:4n-6) acids. The time frame and level of 13C- and 15N-labeling in chloroplast-free organs indicate that photosynthesis-derived primary metabolites were made available to the host through functional kleptoplasts. The presence of specific 13C-labeled long-chain FA, absent from E. viridis algal food, indicates animal based-elongation using kleptoplast-derived FA precursors. Finally, carbon and nitrogen were incorporated in organs and tissues involved in reproductive functions (albumin gland and gonadal follicles), implying a putative role of kleptoplast photosynthesis in the reproductive fitness of the animal host.


Assuntos
Carbono/metabolismo , Cloroplastos/metabolismo , Gastrópodes/metabolismo , Nitrogênio/metabolismo , Animais , Ácidos Graxos/metabolismo , Fotossíntese/fisiologia
11.
Front Microbiol ; 10: 1693, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417510

RESUMO

Brown macroalgae are an essential component of temperate coastal ecosystems and a growing economic sector. They harbor diverse microbial communities that regulate algal development and health. This algal holobiont is dynamic and achieves equilibrium via a complex network of microbial and host interactions. We now report that bacterial and fungal endophytes associated with four brown algae (Ascophyllum nodosum, Pelvetia canaliculata, Laminaria digitata, and Saccharina latissima) produce metabolites that interfere with bacterial autoinducer-2 quorum sensing, a signaling system implicated in virulence and host colonization. Additionally, we performed co-culture experiments combined to a metabolomic approach and demonstrated that microbial interactions influence production of metabolites, including metabolites involved in quorum sensing. Collectively, the data highlight autoinducer-2 quorum sensing as a key metabolite in the complex network of interactions within the algal holobiont.

12.
C R Biol ; 341(6): 301-314, 2018.
Artigo em Francês | MEDLINE | ID: mdl-29859914

RESUMO

The French National Institute of Ecology and Environment (INEE) aims at fostering pluridisciplinarity in Environmental Science and, for that purpose, funds ex muros research groups (GDR) on thematic topics. Trophic ecology has been identified as a scientific field in ecology that would greatly benefit from such networking activity, as being profoundly scattered. This has motivated the seeding of a GDR, entitled "GRET". The contours of the GRET's action, and its ability to fill these gaps within trophic ecology at the French national scale, will depend on the causes of this relative scattering. This study relied on a nationally broadcasted poll aiming at characterizing the field of trophic ecology in France. Amongst all the unique individuals that fulfilled the poll, over 300 belonged at least partly to the field of trophic ecology. The sample included all French public research institutes and career stages. Three main disruptions within the community of scientist in trophic ecology were identified. The first highlighted the lack of interfaces between microbial and trophic ecology. The second evidenced that research questions were strongly linked to single study fields or ecosystem type. Last, research activities are still quite restricted to the ecosystem boundaries. All three rupture points limit the conceptual and applied progression in the field of trophic ecology. Here we show that most of the disruptions within French Trophic Ecology are culturally inherited, rather than motivated by scientific reasons or justified by socio-economic stakes. Comparison with the current literature confirms that these disruptions are not necessarily typical of the French research landscape, but instead echo the general weaknesses of the international research in ecology. Thereby, communication and networking actions within and toward the community of trophic ecologists, as planned within the GRET's objectives, should contribute to fill these gaps, by reintegrating microbes within trophic concepts and setting the seeds for trans- and meta-ecosystemic research opportunities. Once the community of trophic ecologists is aware of the scientific benefit in pushing its boundaries forwards, turning words and good intentions into concrete research projects will depend on the opportunities to obtain research funding.


Assuntos
Ecologia , Ecossistema , Pesquisa/organização & administração , França , Humanos
13.
Front Microbiol ; 9: 3161, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627120

RESUMO

Filamentous fungi asymptomatically colonize the inner tissues of macroalgae, yet their ecological roles remain largely underexplored. Here, we tested if metabolites produced by fungal endophytes might protect their host against a phylogenetically broad spectrum of protistan pathogens. Accordingly, the cultivable fungal endophytes of four brown algal species were isolated and identified based on LSU and SSU sequencing. The fungal metabolomes were tested for their ability to reduce the infection by protistan pathogens in the algal model Ectocarpus siliculosus. The most active metabolomes effective against the oomycetes Eurychasma dicksonii and Anisolpidium ectocarpii, and the phytomixid Maullinia ectocarpii were further characterized chemically. Several pyrenocines isolated from Phaeosphaeria sp. AN596H efficiently inhibited the infection by all abovementioned pathogens. Strikingly, these compounds also inhibited the infection of nori (Pyropia yezoensis) against its two most devastating oomycete pathogens, Olpidiopsis pyropiae, and Pythium porphyrae. We thus demonstrate that fungal endophytes associated with brown algae produce bioactive metabolites which might confer protection against pathogen infection. These results highlight the potential of metabolites to finely-tune the outcome of molecular interactions between algae, their endophytes, and protistan pathogens. This also provide proof-of-concept toward the applicability of such metabolites in marine aquaculture to control otherwise untreatable diseases.

14.
Front Microbiol ; 8: 1995, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29114241

RESUMO

Mass blooms of purple sulfur bacteria growing seasonally on green stranded macroalgae have a major impact on the microbial composition and functionality of intertidal mats. To explore the active anoxygenic phototrophic community in purple bacterial mats from the Roscoff Aber Bay (Brittany, France), we conducted a combined approach including molecular and high-resolution secondary ion mass spectrometry (NanoSIMS) analyses. To investigate the dynamics of carbon and nitrogen assimilation activities, NanoSIMS was coupled with a stable isotope probing (SIP) experiment and a compound specific isotope analysis (CSIA) of fatty acid methyl ester (FAME). Sediment samples were incubated with 13C- and/or 15N-labeled acetate, pyruvate, bicarbonate and ammonium. NanoSIMS analysis of 13C - and 15N -incubated samples showed elevated incorporations of 13C - and 15N in the light and of 13C -acetate in the dark into dense populations of spherical cells that unambiguously dominated the mats. These results confirmed CSIA data that ranked vaccenic acid, an unambiguous marker of purple sulfur bacteria, as the most strongly enriched in the light after 13C -acetate amendment and indicated that acetate uptake, the most active in the mat, was not light-dependent. Analysis of DNA- and cDNA-derived pufM gene sequences revealed that Thiohalocapsa-related clones dominated both libraries and were the most photosynthetically active members of the mat samples. This study provides novel insights into the contribution of purple sulfur bacteria to the carbon cycle during their seasonal developments at the sediment surface in the intertidal zone.

15.
Environ Microbiol ; 19(3): 909-925, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27236063

RESUMO

Salinity regimes in estuaries and coastal areas vary with river discharge patterns, seawater evaporation, the morphology of the coastal waterways and the dynamics of marine water mixing. Therefore, microalgae have to respond to salinity variations at time scales ranging from daily to annual cycles. Microalgae may also have to adapt to physical alterations that induce the loss of connectivity between habitats and the enclosure of bodies of water. Here, we integrated physiological assays and measurements of morphological plasticity with a functional genomics approach to examine the regulatory changes that occur during the acclimation to salinity in the estuarine diatom Thalassiosira weissflogii. We found that cells exposed to different salinity regimes for a short or long period presented adjustments in their carbon fractions, silicon pools, pigment concentrations and/or photosynthetic parameters. Salinity-induced alterations in frustule symmetry were observed only in the long-term (LT) cultures. Whole transcriptome analyses revealed a down-regulation of nuclear and plastid encoded genes during the LT response and identified only a few regulated genes that were in common between the ST and LT responses. We propose that in diatoms, one strategy for acclimating to salinity gradients and maintaining optimal cellular fitness could be a reduction in the cost of transcription.


Assuntos
Aclimatação , Diatomáceas/fisiologia , Transcriptoma , Aclimatação/fisiologia , Carbono , Diatomáceas/genética , Regulação para Baixo , Estuários , Fotossíntese/fisiologia , Salinidade , Água do Mar , Silício
16.
Sci Total Environ ; 512-513: 296-307, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25634734

RESUMO

In order to investigate spatio-temporal variations in the composition and origin of the benthic organic matter (OM) at the sediment surface in mangrove receiving shrimp farm effluents, fatty acid (FA) biomarkers, natural stable isotopes (δ(13)C and δ(15)N), C:N ratios and chlorophyll-a (chl-a) concentrations were determined during the active and the non-active period of the farm. Fatty acid compositions in surface sediments within the mangrove forest indicated that organic matter inputs varied along the year as a result of farm activity. Effluents were the source of fresh particulate organic matter for the mangrove, as evidenced by the unsaturated fatty acid (UFA) distribution. The anthropogenic MUFA 18:1ω9 was not only accumulated at the sediment surface in some parts of the mangrove, but was also exported to the seafront. Direct release of bacteria and enhanced in situ production of fungi, as revealed by specific FAs, stimulated mangrove litter decomposition under effluent runoff condition. Also, microalgae released from ponds contributed to maintain high benthic chl-a concentrations in mangrove sediments in winter and to a shift in microphytobenthic community assemblage. Primary production was high whether the farm released effluent or not which questioned the temporary effect of shrimp farm effluent on benthic microalgae dynamic. This study outlined that mangrove benthic organic matter was qualitatively and quantitatively affected by shrimp farm effluent release and that responses to environmental condition changes likely depended on mangrove stand characteristics.


Assuntos
Aquicultura , Crustáceos , Monitoramento Ambiental , Águas Residuárias/análise , Poluentes da Água/análise , Animais , Eutrofização , Sedimentos Geológicos/química , Nova Caledônia , Águas Residuárias/estatística & dados numéricos , Poluição da Água/estatística & dados numéricos
17.
PLoS One ; 8(12): e82329, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24340018

RESUMO

There is a relative absence of studies dealing with mats of purple sulphur bacteria in the intertidal zone. These bacteria display an array of metabolic pathways that allow them to disperse and develop under a wide variety of conditions, making these mats important in terms of ecosystem processes and functions. Mass blooms of purple sulphur bacteria develop during summer on sediments in the intertidal zone especially on macroalgal deposits. The microbial composition of different types of mats differentially affected by the development of purple sulphur bacteria was examined, at low tide, using a set of biochemical markers (fatty acids, pigments) and composition was assessed against their influence on ecosystem functions (sediment cohesiveness, CO2 fixation). We demonstrated that proliferation of purple sulphur bacteria has a major impact on intertidal mats diversity and functions. Indeed, assemblages dominated by purple sulphur bacteria (Chromatiaceae) were efficient exopolymer producers and their biostabilisation potential was significant. In addition, the massive growth of purple sulphur bacteria resulted in a net CO2 degassing whereas diatom dominated biofilms represented a net CO2 sink.


Assuntos
Organismos Aquáticos/fisiologia , Dióxido de Carbono/metabolismo , Chromatiaceae/fisiologia , Microbiota/fisiologia
18.
PLoS One ; 8(5): e65054, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23741452

RESUMO

We examined mercury concentrations in three fish assemblages to estimate biomagnification rates in the Iténez main river, affected by anthropogenic activities, and two unperturbed rivers from the Iténez basin, Bolivian Amazon. Rivers presented low to moderate water mercury concentrations (from 1.25 ng L(-1) to 2.96 ng L(-1)) and natural differences in terms of sediment load. Mercury biomagnification rates were confronted to trophic structure depicted by carbon and nitrogen stable isotopes composition (δ(15)N; δ(13)C) of primary trophic sources, invertebrates and fishes. Results showed a slight fish contamination in the Iténez River compared to the unperturbed rivers, with higher mercury concentrations in piscivore species (0.15 µg g(-1) vs. 0.11 µg g(-1) in the unperturbed rivers) and a higher biomagnification rate. Trophic structure analysis showed that the higher biomagnification rate in the Iténez River could not be attributed to a longer food chain. Nevertheless, it revealed for the Iténez River a higher contribution of periphyton to the diet of the primary consumers fish species; and more negative δ(13)C values for primary trophic sources, invertebrates and fishes that could indicate a higher contribution of methanotrophic bacteria. These two factors may enhance methylation and methyl mercury transfer in the food web and thus, alternatively or complementarily to the impact of the anthropogenic activities, may explain mercury differences observed in fishes from the Iténez River in comparison to the two other rivers.


Assuntos
Peixes , Mercúrio/química , Rios/química , Animais , Bolívia , Cadeia Alimentar , Água Doce/análise , Água Doce/química , Geografia , Invertebrados , Mercúrio/análise , Mercúrio/toxicidade , Compostos de Metilmercúrio/análise , Compostos de Metilmercúrio/química , Compostos de Metilmercúrio/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
19.
PLoS One ; 7(4): e31183, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22523534

RESUMO

The accumulation of the widely-used antibacterial and antifungal compound triclosan (TCS) in freshwaters raises concerns about the impact of this harmful chemical on the biofilms that are the dominant life style of microorganisms in aquatic systems. However, investigations to-date rarely go beyond effects at the cellular, physiological or morphological level. The present paper focuses on bacterial biofilms addressing the possible chemical impairment of their functionality, while also examining their substratum stabilization potential as one example of an important ecosystem service. The development of a bacterial assemblage of natural composition--isolated from sediments of the Eden Estuary (Scotland, UK)--on non-cohesive glass beads (<63 µm) and exposed to a range of triclosan concentrations (control, 2-100 µg L(-1)) was monitored over time by Magnetic Particle Induction (MagPI). In parallel, bacterial cell numbers, division rate, community composition (DGGE) and EPS (extracellular polymeric substances: carbohydrates and proteins) secretion were determined. While the triclosan exposure did not prevent bacterial settlement, biofilm development was increasingly inhibited by increasing TCS levels. The surface binding capacity (MagPI) of the assemblages was positively correlated to the microbial secreted EPS matrix. The EPS concentrations and composition (quantity and quality) were closely linked to bacterial growth, which was affected by enhanced TCS exposure. Furthermore, TCS induced significant changes in bacterial community composition as well as a significant decrease in bacterial diversity. The impairment of the stabilization potential of bacterial biofilm under even low, environmentally relevant TCS levels is of concern since the resistance of sediments to erosive forces has large implications for the dynamics of sediments and associated pollutant dispersal. In addition, the surface adhesive capacity of the biofilm acts as a sensitive measure of ecosystem effects.


Assuntos
Biofilmes/efeitos dos fármacos , Triclosan/farmacologia , Bactérias/efeitos dos fármacos , Proteínas de Bactérias/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Carboidratos/fisiologia , Adesão Celular/efeitos dos fármacos , Ecossistema , Sedimentos Geológicos/microbiologia , Escócia , Água do Mar/microbiologia
20.
Res Microbiol ; 162(9): 858-68, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21530653

RESUMO

Coastal photosynthetic microbial mats are highly structured microbial communities that populate a variety of shallow environments such as estuaries, sheltered sandy beaches, intertidal flats, salt marshes and hypersaline salterns. In soft sediments, most of these microbial mats are formed of vertically stratified, multicolored cohesive thin layers, of several functional groups of microorganisms, such as cyanobacteria, colorless sulfur bacteria, purple sulfur bacteria and sulfate-reducing bacteria, distributed along vertical microgradients of oxygen, sulfide and light. These microbial communities are highly productive and significant contributors to carbon, nitrogen and sulfur cycles and to sediment stability in shallow-water habitats. Many examples of these communities have been cited in the past, but comparatively few microbial mats have been presented for which mass developments of anoxygenic purple bacteria have been observed. Yet, application of molecular approaches has provided fresh insight into the ecology, diversity and evolution of microbial mats. In situ measurements using electrochemical and optical microprobes led to detailed characterization of their physical and chemical environment, whereas reflectance measurements revealed the spatial and temporal heterogeneity of microbial mat surfaces. We hereby report the main discoveries due to introduction of these powerful techniques and we point out the potential insight to be gained from the study of anoxygenic purple bacterial mats.


Assuntos
Chromatiaceae/metabolismo , Cianobactérias/metabolismo , Água Doce/microbiologia , Consórcios Microbianos/fisiologia , Processos Fototróficos/fisiologia , Microbiologia da Água , Biodiversidade , Ciclo do Carbono/fisiologia , Chromatiaceae/crescimento & desenvolvimento , Cianobactérias/crescimento & desenvolvimento , Ecossistema , Luz , Microeletrodos , Ciclo do Nitrogênio/fisiologia , Fotossíntese/fisiologia , Análise Espectral , Sulfetos/metabolismo , Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA