Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38980394

RESUMO

PURPOSE: Multiple murine studies modelling the immuno-pathophysiological consequences of trauma, shock, burn or sepsis were performed during the last decades. Almost every animal model requires anesthesia for practical and ethical reasons. Furthermore, often, corresponding control groups involve untreated animals without or with a limited exposure to anesthetics. However, the influences of anesthetic drugs on immuno-pathophysiological reactions remain insufficiently investigated. Therefore, we aimed to closer characterize the anesthetic impact exemplified by sevoflurane on the organ performance in mice and thereby investigate the influence of anesthesia itself on major outcome parameters in animal studies. METHODS: C57/BL6 mice were subjected either to 270 min of sevoflurane narcosis or directly euthanized. Plasma, BAL-fluids, lungs, kidneys, liver and intestine were collected and examined for immunological, functional and morphological changes. RESULTS: Systemic levels of the cytokine keratinocyte chemoattractant (KC) were raised in the narcosis group, while concentrations of high mobility group box protein 1 (HMGB-1) as a major inflammatory marker were reduced. In the lungs, levels of HMGB-1 and interleukin 6 (IL-6) were reduced. In contrast, systemic concentrations of intestinal fatty acid binding-protein (i-FABP) as an intestinal damage marker were elevated. Furthermore, liver-type fatty acid binding-protein (L-FABP) levels were lower in the narcosis animals, and inflammatory markers were reduced in liver tissues. Anesthesia also ameliorated the inflammatory reaction in renal tissues, while plasma levels of urea and creatinine were elevated, reflecting either dehydration and/or impaired renal function. CONCLUSION: As anesthesia with sevoflurane exhibited distinct effects in different organs, it is difficult to predict its specific impact on targets of interest in in vivo studies. Therefore, further studies are required to clarify the effects of different anesthetic drugs. Overall, the inclusion of a control group subjected to the same anesthesia protocol as the experimental groups of interest seems helpful to precisely define the inherent impact of the anesthetic when investigating immuno-pathophysiologic conditions in vivo.

2.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891833

RESUMO

In the last few years, several studies have emphasized the existence of injury-specific EV "barcodes" that could have significant importance for the precise diagnosis of different organ injuries in polytrauma patients. To expand the research potential of the NTF (network trauma research) biobank of polytraumatized patients, the NTF research group decided to further establish a biobank for EVs. However, until now, the protocols for the isolation, characterization, and storage of EVs for biobank purposes have not been conceptualized. Plasma and serum samples from healthy volunteers (n = 10) were used. Three EV isolation methods of high relevance for the work with patients' samples (ultracentrifugation, size exclusion chromatography, and immune magnetic bead-based isolation) were compared. EVs were quantified using nanoparticle tracking analysis, EV proteins, and miRNAs. The effects of different isolation solutions; the long storage of samples (up to 3 years); and the sensibility of EVs to serial freezing-thawing cycles and different storage conditions (RT, 4/-20/-80 °C, dry ice) were evaluated. The SEC isolation method was considered the most suitable for EV biobanking. We did not find any difference in the quantity of EVs between serum and plasma-EVs. The importance of particle-free PBS as an isolation solution was confirmed. Plasma that has been frozen for a long time can also be used as a source of EVs. Serial freezing-thawing cycles were found to affect the mean size of EVs but not their amount. The storage of EV samples for 5 days on dry ice significantly reduced the EV protein concentration.


Assuntos
Bancos de Espécimes Biológicos , Vesículas Extracelulares , Traumatismo Múltiplo , Humanos , Vesículas Extracelulares/metabolismo , Traumatismo Múltiplo/metabolismo , Traumatismo Múltiplo/sangue , Manejo de Espécimes/métodos , Cromatografia em Gel/métodos , Masculino , Ultracentrifugação/métodos , MicroRNAs/sangue , MicroRNAs/genética , Adulto , Feminino
3.
Artigo em Inglês | MEDLINE | ID: mdl-38869511

RESUMO

INTRODUCTION: The operating room (OR) is a high-cost and high-revenue area in a hospital comprising extremely complex process steps to treat patients. The perioperative process quality can be optimized through an efficiency-oriented central OR management based on performance indices. However, during the COVID-19 pandemic with the corresponding OR restrictions, there was a significant nation- and worldwide decline in the performance, which may have a lasting impact. Therefore, we proposed the hypothesis that COVID-19 pandemic-related OR restrictions could reduce operative performance in the long term. METHODS: A retrospective, descriptive analysis of perioperative processing times was conducted exemplarily at the University Hospital Ulm using a pre-post design, examining the corresponding second quarters of 2019 to 2022. In total, n = 18,489 operations with n = 314,313 individual time intervals were analyzed. The statistical analyses included the Kruskal-Wallis test adjusted for multiple testing, and the significance level was set at p < 0.01. RESULTS: The results revealed not only a significant decrease in the case volume by 31% (2020) and 23% (2021) during the COVID-19 crisis years, but also significant time delays in various process steps; e.g. the median patient's OR occupancy time (column time) rose from 65 min (2019) to 87 min (2020) and remained elevated (72 min in 2021 and 74 min in 2022, respectively). Even in 2022, beyond the pandemic, the net anaesthesia time was permanently enhanced by 9 min per case. Furthermore, both, the incision-to-closure time and surgeon attachment time were each significantly prolonged by 7 additional minutes, and the time from the end of anaesthesia to the release of the next patient was extended by 4 min. Selected standardized index operations showed only a trend towards these changes, even with a decrease in the incision-to-closure time over time. CONCLUSION: Overall, long-term changes were found in essential perioperative process times even after retraction of the COVID-19 restrictions, indicating some processual "slow down" after the Covid-19-induced "shut down". Further analyses are needed to determine the appropriate targeted control measures to improve processing times and increase the process quality.

4.
Eur J Immunol ; : e2350848, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38794857

RESUMO

Acute injuries trigger an intense activation of the body's defense mechanisms aiming to limit damage and initiate healing. Among the crucial components of the intravascular immune system, the complement system plays a significant role in traumatic injuries, albeit often negatively. It has been suggested that excessive activation of the complement system, transitioning from a localized and timed response to a systemic one, can lead to a loss of its host-protective characteristics. Complement activation products have been associated with the severity of injuries, which sometimes serve as predictors for the onset of organ dysfunctions. Animal studies utilizing complement-targeting agents have provided the basis for considering complement in the management of traumatic injuries in humans. However, numerous studies suggest that the spatial and temporal aspects of complement inhibition are crucial for its efficacy. Understanding the underlying mechanism of the injury is essential to determine where, when, and whether complement inhibition is warranted. Despite the detrimental effects of uncontrolled complement activation, its regulated activation may contribute to essential aspects of healing, such as waste removal and regeneration. This review focuses on the beneficial roles of complement activation in trauma, which are often overlooked or given less consideration but are of immense importance.

5.
Bone Joint Res ; 13(5): 214-225, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38699779

RESUMO

Aims: The aim of this study was to determine the fracture haematoma (fxH) proteome after multiple trauma using label-free proteomics, comparing two different fracture treatment strategies. Methods: A porcine multiple trauma model was used in which two fracture treatment strategies were compared: early total care (ETC) and damage control orthopaedics (DCO). fxH was harvested and analyzed using liquid chromatography-tandem mass spectrometry. Per group, discriminating proteins were identified and protein interaction analyses were performed to further elucidate key biomolecular pathways in the early fracture healing phase. Results: The early fxH proteome was characterized by immunomodulatory and osteogenic proteins, and proteins involved in the coagulation cascade. Treatment-specific proteome alterations were observed. The fxH proteome of the ETC group showed increased expression of pro-inflammatory proteins related to, among others, activation of the complement system, neutrophil functioning, and macrophage activation, while showing decreased expression of proteins related to osteogenesis and tissue remodelling. Conversely, the fxH proteome of the DCO group contained various upregulated or exclusively detected proteins related to tissue regeneration and remodelling, and proteins related to anti-inflammatory and osteogenic processes. Conclusion: The early fxH proteome of the ETC group was characterized by the expression of immunomodulatory, mainly pro-inflammatory, proteins, whereas the early fxH proteome of the DCO group was more regenerative and osteogenic in nature. These findings match clinical observations, in which enhanced surgical trauma after multiple trauma causes dysbalanced inflammation, potentially leading to reduced tissue regeneration, and gained insights into regulatory mechanisms of fracture healing after severe trauma.

6.
Cell Death Dis ; 15(4): 285, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653969

RESUMO

Despite advances in the treatment and care of severe physical injuries, trauma remains one of the main reasons for disability-adjusted life years worldwide. Trauma patients often suffer from disturbances in energy utilization and metabolic dysfunction, including hyperglycemia and increased insulin resistance. White adipose tissue plays an essential role in the regulation of energy homeostasis and is frequently implicated in traumatic injury due to its ubiquitous body distribution but remains poorly studied. Initial triggers of the trauma response are mainly damage-associated molecular patterns (DAMPs) such as histones. We hypothesized that DAMP-induced adipose tissue inflammation contributes to metabolic dysfunction in trauma patients. Therefore, we investigated whether histone release during traumatic injury affects adipose tissue. Making use of a murine polytrauma model with hemorrhagic shock, we found increased serum levels of histones accompanied by an inflammatory response in white adipose tissue. In vitro, extracellular histones induced an inflammatory response in human adipocytes. On the molecular level, this inflammatory response was mediated via a MYD88-IRAK1-ERK signaling axis as demonstrated by pharmacological and genetic inhibition. Histones also induced lytic cell death executed independently of caspases and RIPK1 activity. Importantly, we detected increased histone levels in the bloodstream of patients after polytrauma. Such patients might benefit from a therapy consisting of activated protein C and the FDA-approved ERK inhibitor trametinib, as this combination effectively prevented histone-mediated effects on both, inflammatory gene activation and cell death in adipocytes. Preventing adipose tissue inflammation and adipocyte death in patients with polytrauma could help minimize posttraumatic metabolic dysfunction.


Assuntos
Adipócitos , Histonas , Inflamação , Fator 88 de Diferenciação Mieloide , Humanos , Animais , Histonas/metabolismo , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Inflamação/patologia , Inflamação/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Morte Celular/efeitos dos fármacos , Masculino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Ferimentos e Lesões/complicações , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia , Transdução de Sinais/efeitos dos fármacos
7.
Int J Biomed Imaging ; 2024: 3924036, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38634014

RESUMO

The kidney's microstructure, which comprises a highly convoluted tubular and vascular network, can only be partially revealed using classical 2D histology. Considering that the kidney's microstructure is closely related to its function and is often affected by pathologies, there is a need for powerful and high-resolution 3D imaging techniques to visualize the microstructure. Here, we present how cryogenic contrast-enhanced microCT (cryo-CECT) allowed 3D visualization of glomeruli, tubuli, and vasculature. By comparing different contrast-enhancing staining agents and freezing protocols, we found that the preferred sample preparation protocol was the combination of staining with 1:2 hafnium(IV)-substituted Wells-Dawson polyoxometalate and freezing by submersion in isopentane at -78°C. This optimized protocol showed to be highly sensitive, allowing to detect small pathology-induced microstructural changes in a mouse model of mild trauma-related acute kidney injury after thorax trauma and hemorrhagic shock. In summary, we demonstrated that cryo-CECT is an effective 3D histopathological tool that allows to enhance our understanding of kidney tissue microstructure and their related function.

8.
J Biol Chem ; 300(4): 105784, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401844

RESUMO

The introduction of a therapeutic anti-C5 antibody into clinical practice in 2007 inspired a surge into the development of complement-targeted therapies. This has led to the recent approval of a C3 inhibitory peptide, an antibody directed against C1s and a full pipeline of several complement inhibitors in preclinical and clinical development. However, no inhibitor is available that efficiently inhibits all three complement initiation pathways and targets host cell surface markers as well as complement opsonins. To overcome this, we engineered a novel fusion protein combining selected domains of the three natural complement regulatory proteins decay accelerating factor, factor H and complement receptor 1. Such a triple fusion complement inhibitor (TriFu) was recombinantly expressed and purified alongside multiple variants and its building blocks. We analyzed these proteins for ligand binding affinity and decay acceleration activity by surface plasmon resonance. Additionally, we tested complement inhibition in several in vitro/ex vivo assays using standard classical and alternative pathway restricted hemolysis assays next to hemolysis assays with paroxysmal nocturnal hemoglobinuria erythrocytes. A novel in vitro model of the alternative pathway disease C3 glomerulopathy was established to evaluate the potential of the inhibitors to stop C3 deposition on endothelial cells. Next to the novel engineered triple fusion variants which inactivate complement convertases in an enzyme-like fashion, stoichiometric complement inhibitors targeting C3, C5, factor B, and factor D were tested as comparators. The triple fusion approach yielded a potent complement inhibitor that efficiently inhibits all three complement initiation pathways while targeting to surface markers.


Assuntos
Fator H do Complemento , Receptores de Complemento 3b , Proteínas Recombinantes de Fusão , Humanos , Fator H do Complemento/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/química , Fator H do Complemento/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Ativação do Complemento/efeitos dos fármacos , Antígenos CD55/genética , Antígenos CD55/metabolismo , Hemólise/efeitos dos fármacos , Via Alternativa do Complemento/efeitos dos fármacos , Inativadores do Complemento/farmacologia , Eritrócitos/metabolismo
9.
Eur Arch Psychiatry Clin Neurosci ; 274(5): 1215-1222, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38243017

RESUMO

The role of the complement system in schizophrenia (Sz) is inconclusive due to heterogeneity of the disease and study designs. Here, we assessed the levels of complement activation products and functionality of the classical pathway in acutely ill unmedicated Sz patients at baseline and after 6 weeks of treatment versus matched controls. The study included analyses of the terminal complement complex (sTCC) and C5a in plasma from 96 patients and 96 controls by enzyme-linked immunosorbent assay. Sub-group analysis of serum was conducted for measurement of C4 component and activity of the classical pathway (28 and 24 cases per cohort, respectively). We found no differences in levels of C5a, C4 and classical pathway function in patients versus controls. Plasma sTCC was significantly higher in patients [486 (392-659) ng/mL, n = 96] compared to controls [389 (304-612) ng/mL, n = 96] (p = 0.027, δ = 0.185), but not associated with clinical symptom ratings or treatment. The differences in sTCC between Sz and controls were confirmed using an Aligned Rank Transformation model considering the covariates age and sex (p = 0.040). Additional analysis showed that sTCC was significantly associated with C-reactive protein (CRP; p = 0.006). These findings suggest that sTCC plays a role in Sz as a trait marker of non-specific chronic immune activation, as previously described for CRP. Future longitudinal analyses with more sampling time points from early recognition centres for psychoses may be helpful to better understand the temporal dynamics of innate immune system changes during psychosis development.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/sangue , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Complemento C4/análise , Complemento C4/metabolismo , Complemento C5a , Adulto Jovem , Proteína C-Reativa/metabolismo , Proteína C-Reativa/análise , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo
10.
Osteoarthritis Cartilage ; 32(5): 514-525, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38242312

RESUMO

OBJECTIVE: The complement cascade as major fluid phase innate immune system is activated during progression of osteoarthritis (OA). Generated anaphylatoxins and the corresponding receptors C3aR and C5aR1 are associated with the calcification of blood vessels and involved in osteogenic differentiation. This study aims on elucidating whether complement activation products contribute to cartilage calcification of OA cartilage. METHOD: Human articular chondrocytes were osteogenically differentiated in vitro in the presence or absence of C3a, C5a, and bone morphogenetic protein (BMP) 2. Furthermore, macroscopically intact (OARSI grade ≤ 1) and highly degenerated human cartilage (OARSI grade ≥ 3) was used for C3aR and C5aR1 histochemistry. Calcification of the cartilage was assessed by Alizarin Red S and von Kossa staining. RESULTS: C3a and C5a amplified matrix mineralization during in vitro osteogenesis, while inhibition of the corresponding receptors impaired calcium deposition. Moreover, C3aR and C5aR1 expression was upregulated during osteogenic differentiation and also in degenerated cartilage. Additionally, anaphylatoxin receptor expression was positively associated with calcification of native cartilage tissue and calcium deposition during osteogenic differentiation. Finally, the pro-hypertrophic growth factor BMP2 induced the expression of C5aR1. CONCLUSIONS: Our findings indicate that anaphylatoxins and their receptors play a decisive role in cartilage calcification processes during OA progression.


Assuntos
Calcinose , Osteoartrite , Humanos , Anafilatoxinas/metabolismo , Osteogênese , Cálcio/metabolismo , Cartilagem/metabolismo , Complemento C5a/metabolismo , Complemento C5a/farmacologia
12.
Front Immunol ; 14: 1273612, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936707

RESUMO

Introduction: Two trauma treatment principles are Early Total Care (ETC), and Damage Control Orthopedics (DCO). Cellular mechanisms that underlie the connection between treatment type, its systemic effects, and tissue regeneration are not fully known. Therefore, this study aimed to: 1) profile microRNA (miRNA) expression in plasma derived Extracellular Vesicles (EVs) from a porcine multiple trauma model at different timepoints, comparing two surgical treatments; and 2) determine and validate the miRNA's messengerRNA (mRNA) targets. Methods: The porcine multiple trauma model consisted of blunt chest trauma, liver laceration, bilateral femur fractures, and controlled haemorrhagic shock. Two treatment groups were defined, ETC (n=8), and DCO (n=8). Animals were monitored under Intensive Care Unit-standards, blood was sampled at 1.5, 2.5, 24, and 72 hours after trauma, and EVs were harvested from plasma. MiRNAs were analysed using quantitative Polymerase Chain Reaction arrays. MRNA targets were identified in silico and validated in vivo in lung and liver tissue. Results: The arrays showed distinct treatment specific miRNA expression patterns throughout all timepoints, and miRNAs related to the multiple trauma and its individual injuries. EV-packed miRNA expression in the ETC group was more pro-inflammatory, indicating potentially decreased tissue regenerative capacities in the acute post-traumatic phase. In silico target prediction revealed several overlapping mRNA targets among the identified miRNAs, related to inflammation, (pulmonary) fibrosis, and Wnt-signalling. These were, among others, A Disintegrin and Metalloproteinase domain-containing protein 10, Collagen Type 1 Alpha 1 Chain, Catenin Beta Interacting Protein 1, and Signal Transducers and Activators of Transcription 3. Validation of these mRNA targets in the lung showed significant, treatment specific deregulations which matched the expression of their upstream miRNAs. No significant mRNA deregulations were observed in the liver. Discussion: This study showed treatment specific, EV-packed miRNA expression patterns after trauma that correlated with mRNA expressions in the lungs, target organs over distance. A systemic response to the increased surgical trauma in the ETC group was identified, with various miRNAs associated with injuries from the trauma model, and involved in (systemic) inflammation, tissue regeneration. EV-transported miRNAs demonstrated a clear role in multiple trauma, warranting further research into tissue-tissue talk and therapeutic applications of EVs after trauma.


Assuntos
MicroRNA Circulante , Vesículas Extracelulares , MicroRNAs , Traumatismo Múltiplo , Traumatismos Torácicos , Ferimentos não Penetrantes , Suínos , Animais , MicroRNA Circulante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Inflamação/metabolismo , Traumatismo Múltiplo/genética , Vesículas Extracelulares/metabolismo , RNA Mensageiro/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-37999755

RESUMO

Trauma and toxic substances are connected in several aspects. On the one hand, toxic substances can be the reason for traumatic injuries in the context of accidental or violent and criminal circumstances. Examples for the first scenario is the release of toxic gases, chemicals, and particles during house fires, and for the second scenario, the use of chemical or biological weapons in the context of terroristic activities. Toxic substances can cause or enhance severe, life-threatening trauma, as described in this review for various chemical warfare, by inducing a tissue trauma accompanied by break down of important barriers in the body, such as the blood-air or the blood-gut barriers. This in turn initiates a "vicious circle" as the contribution of inflammatory responses to the traumatic damage enhances the macro- and micro-barrier breakdown and often results in fatal outcome. The development of sophisticated methods for detection and identification of toxic substances as well as the special treatment of the intoxicated trauma patient is summarized in this review. Moreover, some highly toxic substances, such as the protein toxins from the pathogenic bacterium Clostridioides (C.) difficile, cause severe post-traumatic complications which significantly worsens the outcome of hospitalized patients, in particular in multiply injured trauma patients. Therefore, novel pharmacological options for the treatment of such patients are necessarily needed and one promising strategy might be the neutralization of the toxins that cause the disease. This review summarizes recent findings on the molecular and cellular mechanisms of toxic chemicals and bacterial toxins that contribute to barrier breakdown in the human body as wells pharmacological options for treatment, in particular in the context of intoxicated trauma patients. "trauma-toxicology" comprises concepts regrading basic research, development of novel pharmacological/therapeutic options and clinical aspects in the complex interplay and "vicious circle" of severe tissue trauma, barrier breakdown, pathogen and toxin exposure, tissue damage, and subsequent clinical complications.

14.
Front Immunol ; 14: 1279496, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035093

RESUMO

Background: Despite major advances in medicine, blood-borne biomarkers are urgently needed to support decision-making, including polytrauma. Here, we assessed serum-derived extracellular vesicles (EVs) as potential markers of decision-making in polytrauma. Objective: Our Liquid Biopsy in Organ Damage (LiBOD) study aimed to differentiate polytrauma with organ injury from polytrauma without organ injury. We analysed of blood-borne small EVs at the individual level using a combination of immunocapture and high-resolution imaging. Methods: To this end, we isolated, purified, and characterized small EVs according to the latest Minimal Information for Studies of Extracellular Vesicles (MISEV) guidelines from human blood collected within 24 h post-trauma and validated our results using a porcine polytrauma model. Results: We found that small EVs derived from monocytes CD14+ and CD14+CD61+ were significantly elevated in polytrauma with organ damage. To be precise, our findings revealed that CD9+CD14+ and CD14+CD61+ small EVs exhibited superior performance compared to CD9+CD61+ small EVs in accurately indicating polytrauma with organ damage, reaching a sensitivity and a specificity of 0.81% and 0.97%, respectively. The results in humans were confirmed in an independent porcine model of polytrauma. Conclusion: These findings suggest that these specific types of small EVs may serve as valuable, non-invasive, and objective biomarkers for assessing and monitoring the severity of polytrauma and associated organ damage.


Assuntos
Vesículas Extracelulares , Traumatismo Múltiplo , Humanos , Animais , Suínos , Vesículas Extracelulares/patologia , Biomarcadores , Biópsia Líquida , Monócitos , Traumatismo Múltiplo/patologia
15.
J Nephrol ; 36(9): 2417-2429, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37542608

RESUMO

Acute kidney injury development after trauma, burn, or sepsis occurs frequently but remains a scientific and clinical challenge. Whereas the pathophysiological focus has mainly been on hemodynamics and the downstream renal tubular system, little is known about alterations upstream within the glomerulus post trauma or during sepsis. Particularly for the glomerular endothelial cells, mesangial cells, basal membrane, and podocytes, all of which form the glomerular filter, there are numerous in vitro studies on the molecular and functional consequences upon exposure of single cell types to specific damage- or microbial-associated molecular patterns. By contrast, a lack of knowledge exists in the real world regarding the orchestrated inflammatory response of the glomerulus post trauma or burn or during sepsis. Therefore, we aim to provide an overview on the glomerulus as an immune target but also as a perpetrator of the danger response to traumatic and septic conditions, and present major players involved in the context of critical illness. Finally, we highlight research gaps of this rather neglected but worthwhile area to define future molecular targets and therapeutic strategies to prevent or improve the course of AKI after trauma, burn, or sepsis.


Assuntos
Injúria Renal Aguda , Queimaduras , Sepse , Humanos , Células Endoteliais , Glomérulos Renais , Queimaduras/complicações , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/terapia , Sepse/complicações
16.
Front Immunol ; 14: 1180282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457734

RESUMO

Cystic fibrosis (CF) is a monogenetic disease caused by an impairment of the cystic fibrosis transmembrane conductance regulator (CFTR). CF affects multiple organs and is associated with acute and chronic inflammation. In 2020, Elexacaftor-Tezacaftor-Ivacaftor (ETI) was approved to enhance and restore the remaining CFTR functionality. This study investigates cellular innate immunity, with a focus on neutrophil activation and phenotype, comparing healthy volunteers with patients with CF before (T1, n = 13) and after six months (T2, n = 11) of ETI treatment. ETI treatment reduced sweat chloride (T1: 95 mmol/l (83|108) vs. T2: 32 mmol/l (25|62), p < 0.01, median, first|third quartile) and significantly improved pulmonal function (FEV1 T1: 2.66 l (1.92|3.04) vs. T2: 3.69 l (3.00|4.03), p < 0.01). Moreover, there was a significant decrease in the biomarker human epididymis protein 4 (T1: 6.2 ng/ml (4.6|6.3) vs. T2: 3.0 ng/ml (2.2|3.7), p < 0.01) and a small but significant decrease in matrix metallopeptidase 9 (T1: 45.5 ng/ml (32.5|140.1) vs. T2: 28.2 ng/ml (18.2|33.6), p < 0.05). Neutrophil phenotype (CD10, CD11b, CD62L, and CD66b) and function (radical oxygen species generation, chemotactic and phagocytic activity) remained largely unaffected by ETI treatment. Likewise, monocyte phenotype and markers of platelet activation were similar at T1 and T2. In summary, the present study confirmed a positive impact on patients with CF after ETI treatment. However, neither beneficial nor harmful effects of ETI treatment on cellular innate immunity could be detected, possibly due to the study population consisting of patients with well-controlled CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Plaquetas , Monócitos , Granulócitos
17.
Blood Adv ; 7(20): 6367-6380, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37428869

RESUMO

Complement activation in the diseases paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS) results in cytolysis and fatal thrombotic events, which are largely refractory to anticoagulation and/or antiplatelet therapy. Anticomplement therapy, however, efficiently prevents thrombotic events in PNH and aHUS, but the underlying mechanisms remain unresolved. We show that complement-mediated hemolysis in whole blood induces platelet activation similarly to activation by adenosine 5'-diphosphate (ADP). Blockage of C3 or C5 abolished platelet activation. We found that human platelets failed to respond functionally to the anaphylatoxins C3a and C5a. Instead, complement activation did lead to prothrombotic cell activation in the whole blood when membrane attack complex (MAC)-mediated cytolysis occurred. Consequently, we demonstrate that ADP receptor antagonists efficiently inhibited platelet activation, although full complement activation, which causes hemolysis, occurred. By using an established model of mismatched erythrocyte transfusions in rats, we crossvalidated these findings in vivo using the complement inhibitor OmCI and cobra venom factor. Consumptive complement activation in this animal model only led to a thrombotic phenotype when MAC-mediated cytolysis occurred. In conclusion, complement activation only induces substantial prothrombotic cell activation if terminal pathway activation culminates in MAC-mediated release of intracellular ADP. These results explain why anticomplement therapy efficiently prevents thromboembolisms without interfering negatively with hemostasis.


Assuntos
Síndrome Hemolítico-Urêmica Atípica , Hemoglobinúria Paroxística , Humanos , Ratos , Animais , Complexo de Ataque à Membrana do Sistema Complemento , Hemólise , Eritrócitos/metabolismo , Ativação do Complemento , Plaquetas/metabolismo , Hemoglobinúria Paroxística/genética
18.
Front Med (Lausanne) ; 10: 1098305, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305141

RESUMO

Physicians are expected to place the patient's interests above their own. Such prioritization has worldwide consent. It constitutes the difference between medicine and other professions. The present conceptual opinion paper summarizes the authors' clinical experience with patient care and student teaching during the last 45 years. The authors comment on their own conception by referring to present debates and prominent statements from the past. Fundamental changes in medicine have taken place over the last five decades. New diseases have emerged while diagnostic and therapeutic options for patients have grown steadily - along with healthcare costs. At the same time, economic and legal constraints for physicians have increased, as has moral pressure. The interaction of physicians with patients has gradually shifted from a personal to a factual relationship. In the factual, more formal relationship, the patient and physician represent equal partners of a legal contract, which jeopardizes the prioritization of the patient's interests. The formal relationship implies defensiveness. By contrast, in the personal relationship, the physician adopts an existentialist commitment while simultaneously enabling and respecting the patient's autonomous decision-making. The authors argue for the personal relationship. However, the patient and physician are no friends. Consequently, the physician in effect competes with the patient from a knowledge-based but opposite position. Both need to make efforts to consent and maintain the relationship even when they dissent. This implies that the physician does not simply comply with the patient's wishes.

20.
Front Immunol ; 14: 1093022, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936923

RESUMO

Trauma is a major cause of death worldwide. The post-traumatic immune response culminates in the release of pro-inflammatory mediators, translating in the infiltration of neutrophils (PMNs) at injury sites. The extent of this inflammation is determined by multiple factors, such as PMN adhesion to the endothelium, transendothelial migration, endothelial barrier integrity as well as PMN swarming, mass infiltration and activation. This process is initiated by secondary lipid mediators, such as leukotriene B4 (LTB4). We here provide evidence that Protein kinase D1 (PRKD1) in endothelial cells is implicated in all these processes. Endothelial PRKD1 is activated by pro-inflammatory stimuli and amplifies PMN-mediated inflammation by upregulation of cytokine and chemokines as well as adhesion molecules, such as ICAM-1, VCAM-1 and E-selectin. This induces enhanced PMN adhesion and trans-migration. PRKD1 activation also destabilizes endothelial VE-cadherin adhesion complexes and thus the endothelial barrier, fostering PMN infiltration. We even describe a yet unrecognized PRKD1-dependant mechanism to induce biosynthesis of the PMN-swarming mediator LTB4 directed via intercellular communication through small extracellular vesicles (sEVs) and enhanced CXCL8 secretion from activated endothelial cells. These endothelial sEVs transfer the LTB4 biosynthesis enzyme LTA4 hydrolase (LTA4H) to prime PMNs, while initiating biosynthesis also requires additional signals, like CXCL8. We further demonstrate the respective LTA4H-positive sEVs in the serum of polytrauma patients, peaking 12 h post injury. Therefore, PRKD1 is a key regulator in the coordinated communication of the endothelium with PMNs and a vital signaling node during post-traumatic inflammation.


Assuntos
Células Endoteliais , Inflamação , Proteínas Quinases , Ferimentos e Lesões , Humanos , Adesão Celular/fisiologia , Endotélio Vascular/metabolismo , Inflamação/metabolismo , Proteínas Quinases/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA