Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Appl ; 17(4)2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37965129

RESUMO

Most microwave readout architectures in quantum computing or sensing rely on a semiconductor amplifier at 4 K, typically a high-electron mobility transistor (HEMT). Despite its remarkable noise performance, a conventional HEMT dissipates several milliwatts of power, posing a practical challenge to scale up the number of qubits or sensors addressed in these architectures. As an alternative, we present an amplification chain consisting of a kinetic inductance traveling-wave parametric amplifier (KITWPA) placed at 4 K, followed by a HEMT placed at 70 K, and demonstrate a chain-added noise TΣ=6.3±0.5K between 3.5 and 5.5 GHz. While, in principle, any parametric amplifier can be quantum limited even at 4 K, in practice we find the performance of the KITWPA to be limited by the temperature of its inputs and by an excess of noise Tex=1.9K. The dissipation of the rf pump of the KITWPA constitutes the main power load at 4 K and is about 1% that of a HEMT. These combined noise and power dissipation values pave the way for the use of the KITWPA as a replacement for semiconductor amplifiers.

2.
Phys Rev Lett ; 127(15): 151301, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34678017

RESUMO

We present results from an analysis of all data taken by the BICEP2, Keck Array, and BICEP3 CMB polarization experiments up to and including the 2018 observing season. We add additional Keck Array observations at 220 GHz and BICEP3 observations at 95 GHz to the previous 95/150/220 GHz dataset. The Q/U maps now reach depths of 2.8, 2.8, and 8.8 µK_{CMB} arcmin at 95, 150, and 220 GHz, respectively, over an effective area of ≈600 square degrees at 95 GHz and ≈400 square degrees at 150 and 220 GHz. The 220 GHz maps now achieve a signal-to-noise ratio on polarized dust emission exceeding that of Planck at 353 GHz. We take auto- and cross-spectra between these maps and publicly available WMAP and Planck maps at frequencies from 23 to 353 GHz and evaluate the joint likelihood of the spectra versus a multicomponent model of lensed ΛCDM+r+dust+synchrotron+noise. The foreground model has seven parameters, and no longer requires a prior on the frequency spectral index of the dust emission taken from measurements on other regions of the sky. This model is an adequate description of the data at the current noise levels. The likelihood analysis yields the constraint r_{0.05}<0.036 at 95% confidence. Running maximum likelihood search on simulations we obtain unbiased results and find that σ(r)=0.009. These are the strongest constraints to date on primordial gravitational waves.

3.
J Low Temp Phys ; 199(3-4)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33487736

RESUMO

We describe the design and measurement of feedhorn-coupled, transition-edge sensor (TES) polarimeters with two passbands centered at 220 GHz and 280 GHz, intended for observations of the cosmic microwave background. Each pixel couples polarized light in two linear polarizations by use of a planar orthomode transducer and senses power via four TES bolometers, one for each band in each linear polarization. Previous designs of this detector architecture incorporated passbands from 27 to 220 GHz; we now demonstrate this technology at frequencies up to 315 GHz. Observational passbands are defined with an on-chip diplexer, and Fourier-transform-spectrometer measurements are in excellent agreement with simulations. We find coupling from feedhorn to TES bolometer using a cryogenic, temperature-controlled thermal source. We determine the optical efficiency of our device is η = 77% ± 6% (75% ± 5%) for 220 (280) GHz, relative to the designed passband shapes. Lastly, we compare two power-termination schemes commonly used in wide-bandwidth millimeter-wave polarimeters and find equal performance in terms of optical efficiency and passband shape.

4.
J Low Temp Phys ; 193(3-4)2018.
Artigo em Inglês | MEDLINE | ID: mdl-34815585

RESUMO

Microwave Kinetic Inductance Detectors (MKIDs) provide a compelling path forward to the large-format polarimeter, imaging, and spectrometer arrays needed for next-generation experiments in millimeter-wave cosmology and astronomy. We describe the development of feedhorn-coupled MKID detectors for the TolTEC millimeter-wave imaging polarimeter being constructed for the 50-meter Large Millimeter Telescope (LMT). Observations with TolTEC are planned to begin in early 2019. TolTEC will comprise ∼7,000 polarization sensitive MKIDs and will represent the first MKID arrays fabricated and deployed on monolithic 150 mm diameter silicon wafers - a critical step towards future large-scale experiments with over 105 detectors. TolTEC will operate in observational bands at 1.1, 1.4, and 2.0 mm and will use dichroic filters to define a physically independent focal plane for each passband, thus allowing the polarimeters to use simple, direct-absorption inductive structures that are impedance matched to incident radiation. This work is part of a larger program at NIST-Boulder to develop MKID-based detector technologies for use over a wide range of photon energies spanning millimeter-waves to X-rays. We present the detailed pixel layout and describe the methods, tools, and flexible design parameters that allow this solution to be optimized for use anywhere in the millimeter and sub-millimeter bands. We also present measurements of prototype devices operating in the 1.1 mm band and compare the observed optical performance to that predicted from models and simulations.

5.
J Low Temp Phys ; 193: 886-892, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38515616

RESUMO

Microwave SQUID multiplexing is a promising technique for multiplexing large arrays of transition edge sensors. A major bottleneck in the development and distribution of microwave SQUID multiplexer chips occurs in the time-intensive design testing and quality assurance stages. To obtain useful RF measurements, these devices must be cooled to temperatures below 500 mK. The need for a more efficient system to screen microwave multiplexer chips has grown as the number of chips requested by collaborators per year reaches into the hundreds. We have therefore assembled a test bed for microwave SQUID circuits, which decreases screening time for four 32-channel chips from 24 h in an adiabatic demagnetization refrigerator to approximately 5 h in a helium dip probe containing a closed cycle 3He sorption refrigerator. We discuss defining characteristics of these microwave circuits and the challenges of establishing an efficient testing setup for them.

6.
Appl Phys Lett ; 111(24)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29335654

RESUMO

Key performance characteristics are demonstrated for the microwave SQUID multiplexer (µmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the µmux produces a white, input referred current noise level of [Formula: see text] at -77 dB microwave probe tone power, which is well below expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure [Formula: see text] in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e. phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ~ 100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the µmux as a viable readout technique for future CMB imaging instruments.

7.
Appl Phys Lett ; 108(22)2016 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29332947

RESUMO

We present a tunable coupler scheme that allows us to tune the coupling strength between a feedline and a superconducting resonator in situ over a wide range. In this scheme, we shunt the feedline with a 50-Ω lumped-element nonlinear transmission line made from a 20 nm NbTiN film. By injecting a DC current, the nonlinear kinetic inductance changes and the effective impedance shunting the resonator periodically varies from a short to an open, which tunes the coupling strength and coupling quality factor Qc . We have demonstrated Qc tuning over a factor of 40, between Qc ~ 5.5 × 104 and Qc ~ 2.3 × 106, for a 4.5 GHz resonator by applying a DC current less than 3.3 mA. Our tunable coupler scheme is easy to implement and may find broad applications in superconducting detector and quantum computing/information experiments.

8.
Phys Rev Lett ; 111(14): 141301, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24138230

RESUMO

Gravitational lensing of the cosmic microwave background generates a curl pattern in the observed polarization. This "B-mode" signal provides a measure of the projected mass distribution over the entire observable Universe and also acts as a contaminant for the measurement of primordial gravity-wave signals. In this Letter we present the first detection of gravitational lensing B modes, using first-season data from the polarization-sensitive receiver on the South Pole Telescope (SPTpol). We construct a template for the lensing B-mode signal by combining E-mode polarization measured by SPTpol with estimates of the lensing potential from a Herschel-SPIRE map of the cosmic infrared background. We compare this template to the B modes measured directly by SPTpol, finding a nonzero correlation at 7.7σ significance. The correlation has an amplitude and scale dependence consistent with theoretical expectations, is robust with respect to analysis choices, and constitutes the first measurement of a powerful cosmological observable.

9.
Appl Opt ; 52(36): 8747-58, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24513939

RESUMO

The increasing scale of cryogenic detector arrays for submillimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n=3.4, low loss, and high thermal conductivity is a nearly optimal material for these purposes but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coefficient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three-axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating. We have fabricated silicon lenses as large as 33.4 cm in diameter with micromachined layers optimized for use between 125 and 165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30° with low cross polarization. We describe the design, tolerance, manufacture, and measurements of these coatings and present measurements of the optical properties of silicon at millimeter wavelengths at cryogenic and room temperatures. This coating and lens fabrication approach is applicable from centimeter to submillimeter wavelengths and can be used to fabricate coatings with greater than octave bandwidth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA