RESUMO
BACKGROUND AND OBJECTIVES: Idiopathic/isolated REM sleep behavior disorder (iRBD) has been strongly linked to neurodegenerative synucleinopathies such as Parkinson disease, dementia with Lewy bodies, and multiple system atrophy. However, there have been increasing reports of RBD as a presenting feature of serious and treatable autoimmune syndromes, particularly IGLON5. This study's objective was to investigate the frequency of autoantibodies in a large cohort of participants with iRBD. METHODS: Participants were enrolled in the North American Prodromal Synucleinopathy cohort with polysomnography-confirmed iRBD, free of parkinsonism and dementia. Plasma samples were systematically screened for the autoantibodies IGLON5, DPPX, LGI1, and CASPR2 using plasma IgG cell-based assay. Positive or equivocal results were confirmed by repeat testing, plus tissue-based indirect immunofluorescence assay for IGLON5. RESULTS: Of 339 samples analyzed, 3 participants (0.9%) had confirmed positive IGLON5 autoantibodies in the cell-based assay, which were confirmed by the tissue-based assay. An additional participant was positive for CASPR2 with low titer by cell-based assay only (of lower clinical certainty). These cases exhibited a variety of symptoms including dream enactment, cognitive decline, autonomic dysfunction, and motor symptoms. In 1 IGLON5 case and the CASPR2 case, evolution was suggestive of typical synucleinopathy, suggesting the possibility that findings were incidental. However, 2 participants with IGLON5 died before diagnosis was clinically suspected, with a final clinical picture highly suggestive of autoimmune disease. DISCUSSION: Our finding that nearly 1% of a large iRBD cohort may have a serious but potentially treatable autoantibody syndrome has important clinical implications. In particular, it raises the question of whether autoantibody testing for IGLON-5-IgG should be widely implemented for participants with iRBD, considering the difficulty in diagnosis of autoimmune diseases, their response to treatment, and the potential for rapid disease progression. However, any routine testing protocol will also have to consider costs and potential adverse effects of false-positive findings. TRIAL REGISTRATION INFORMATION: NCT03623672.
Assuntos
Autoanticorpos , Moléculas de Adesão Celular Neuronais , Transtorno do Comportamento do Sono REM , Humanos , Transtorno do Comportamento do Sono REM/imunologia , Transtorno do Comportamento do Sono REM/diagnóstico , Masculino , Feminino , Autoanticorpos/sangue , Idoso , Moléculas de Adesão Celular Neuronais/imunologia , Pessoa de Meia-Idade , Estudos de CoortesRESUMO
BACKGROUND AND OBJECTIVES: REM sleep behavior disorder (RBD) is a parasomnia characterized by dream enactment. The International RBD Study Group developed the RBD Symptom Severity Scale (RBDSSS) to assess symptom severity for clinical or research use. We assessed the psychometric and clinimetric properties of the RBDSSS in participants enrolled in the North American Prodromal Synucleinopathy (NAPS) Consortium for RBD. METHODS: NAPS participants, who have polysomnogram-confirmed RBD, and their bedpartners completed the RBDSSS (participant and bedpartner versions). The RBDSSS contains 8 questions to assess the frequency and severity/impact of (1) dream content, (2) vocalizations, (3) movements, and (4) injuries associated with RBD. Total scores for participant (maximum score = 54) and bedpartner (maximum score = 38) questionnaires were derived by multiplying frequency and severity scores for each question. The Clinical Global Impression Scale of Severity (CGI-S) and RBD symptom frequency were assessed by a physician during a semistructured clinical interview with participants and, if available, bedpartners. Descriptive analyses, correlations between overall scores, and subitems were assessed, and item response analysis was performed to determine the scale's validity. RESULTS: Among 261 study participants, the median (interquartile range) score for the RBDSSS-PT (participant) was 10 (4-18) and that for the RBDSSS-BP (bedpartner) was 8 (4-15). The median CGI-S was 3 (3-4), indicating moderate severity. RBDSSS-BP scores were significantly lower in women with RBD (6 vs 9, p = 0.02), while there were no sex differences in RBDSSS-PT scores (8 vs 10.5, p = 0.615). Positive correlations were found between RBDSSS-PT vs RBDSSS-BP (Spearman rs = 0.561), RBDSSS-PT vs CGI-S (rs = 0.556), and RBDSSS-BP vs CGI-S (rs = 0.491, all p < 0.0001). Item response analysis showed a high discriminatory value (range 1.40-2.12) for the RBDSSS-PT and RBDSSS-BP (1.29-3.47). DISCUSSION: We describe the RBDSSS with adequate psychometric and clinimetric properties to quantify RBD symptom severity and good concordance between participant and bedpartner questionnaires and between RBDSSS scores and clinician-assessed global severity.
Assuntos
Parassonias , Transtorno do Comportamento do Sono REM , Sinucleinopatias , Humanos , Feminino , Transtorno do Comportamento do Sono REM/diagnóstico , Movimento , América do NorteRESUMO
STUDY OBJECTIVES: Rapid eye movement sleep behavior disorder (RBD) is strongly associated with phenoconversion to an overt synucleinopathy, e.g. Parkinson's disease (PD), Lewy body dementia, and related disorders. Comorbid traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD)-henceforth "neurotrauma" (NT)-increase the odds of RBD by ~2.5-fold and are associated with an increased rate of service-connected PD in Veterans. Thus, RBD and NT are both independently associated with PD; however, it is unclear how NT influences neurological function in patients with RBD. METHODS: Participants ≥18 years with overnight polysomnogram-confirmed RBD were enrolled between 8/2018 to 4/2021 through the North American Prodromal Synucleinopathy Consortium. Standardized assessments for RBD, TBI, and PTSD history, as well as cognitive, motor, sensory, and autonomic function, were completed. This cross-sectional analysis compared cases (nâ =â 24; RBDâ +â NT) to controls (nâ =â 96; RBD), matched for age (~60 years), sex (15% female), and years of education (~15 years). RESULTS: RBDâ +â NT reported earlier RBD symptom onset (37.5â ±â 11.9 vs. 52.2â ±â 15.1 years of age) and a more severe RBD phenotype. Similarly, RBDâ +â NT reported more severe anxiety and depression, greater frequency of hypertension, and significantly worse cognitive, motor, and autonomic function compared to RBD. No differences in olfaction or color vision were observed. CONCLUSIONS: This cross-sectional, matched case:control study shows individuals with RBDâ +â NT have significantly worse neurological measures related to common features of an overt synucleinopathy. Confirmatory longitudinal studies are ongoing; however, these results suggest RBDâ +â NT may be associated with more advanced neurological symptoms related to an evolving neurodegenerative process.
Assuntos
Transtorno do Comportamento do Sono REM , Humanos , Transtorno do Comportamento do Sono REM/epidemiologia , Transtorno do Comportamento do Sono REM/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Transversais , Idoso , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Sinucleinopatias/fisiopatologia , Sinucleinopatias/epidemiologia , Sinucleinopatias/complicações , Transtornos de Estresse Pós-Traumáticos/epidemiologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Sintomas Prodrômicos , Polissonografia , Comorbidade , Doenças do Sistema Nervoso Autônomo/epidemiologia , Doenças do Sistema Nervoso Autônomo/fisiopatologia , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/etiologia , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia , Doença de Parkinson/epidemiologiaRESUMO
BACKGROUND AND OBJECTIVES: Although orthostatic hypotension (OH) can be an early feature of autonomic dysfunction in isolated REM sleep behavior disorder (iRBD), no large-scale studies have examined the frequency of OH in iRBD. In this study, we prospectively evaluated the frequency of OH in a large multicenter iRBD cohort. METHODS: Participants 18 years or older with video polysomnogram-confirmed iRBD were enrolled through the North American Prodromal Synucleinopathy consortium. All participants underwent 3-minute orthostatic stand testing to assess the frequency of OH, and a Δ heart rate/Δ systolic blood pressure (ΔHR/ΔSBP) ratio <0.5 was used to define reduced HR augmentation, suggestive of neurogenic OH. All participants completed a battery of assessments, including the Scales for Outcomes in Parkinson Disease-Autonomic Dysfunction (SCOPA-AUT) and others assessing cognitive, motor, psychiatric, and sensory domains. RESULTS: Of 340 iRBD participants (65 ± 10 years, 82% male), 93 (27%) met criteria for OH (ΔHR/ΔSBP 0.37 ± 0.28; range 0.0-1.57), and of these, 72 (77%) met criteria for OH with reduced HR augmentation (ΔHR/ΔSBP 0.28 ± 0.21; range 0.0-0.5). Supine hypertension (sHTN) was present in 72% of those with OH. Compared with iRBD participants without OH, those with OH were older, reported older age of RBD symptom onset, and had worse olfaction. There was no difference in autonomic symptom scores as measured by SCOPA-AUT. DISCUSSION: OH and sHTN are common in iRBD. However, as patients may have reduced autonomic symptom awareness, orthostatic stand testing should be considered in clinical evaluations. Longitudinal studies are needed to clarify the relationship between OH and phenoconversion risk in iRBD. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov: NCT03623672; North American Prodromal Synucleinopathy Consortium.
Assuntos
Doenças do Sistema Nervoso Autônomo , Hipotensão Ortostática , Doença de Parkinson , Transtorno do Comportamento do Sono REM , Sinucleinopatias , Humanos , Masculino , Feminino , Transtorno do Comportamento do Sono REM/diagnóstico , Hipotensão Ortostática/diagnóstico , Hipotensão Ortostática/epidemiologia , Doença de Parkinson/complicações , Doença de Parkinson/epidemiologia , Doenças do Sistema Nervoso Autônomo/diagnóstico , Doenças do Sistema Nervoso Autônomo/epidemiologiaRESUMO
The loss of melanized neurons in the substantia nigra pars compacta (SNc) is a hallmark pathology in Parkinson's disease (PD). Melanized neurons in SNc can be visualized in vivo using magnetization transfer (MT) effects. Nigral volume was extracted in data acquired with a MT-prepared gradient echo sequence in 33 controls, 83 non-manifest carriers (42 LRRK2 and 41 GBA nonmanifest carriers), 65 prodromal hyposmic participants, 105 de novo PD patients and 26 48-month PD patients from the Parkinson's Progressive Markers Initiative. No difference in nigral volume was seen between controls and LRRK2 and GBA non-manifest carriers (F=0.076; P=0.927). A significant main effect in group was observed between controls, prodromal hyposmic participants, and overt PD patients (F=5.192; P=0.002). Longer disease duration significantly correlated with lower nigral volume (r=-0.252; P=0.010). This study shows that nigral depigmentation can be robustly detected in prodromal hyposmic participants and overt PD patients.
RESUMO
Substantia nigra pars compacta (SNc) and locus coeruleus (LC) are neuromelanin-rich nuclei implicated in diverse cognitive and motor processes in normal brain function and disease. However, their roles in aging and neurodegenerative disease mechanisms have remained unclear due to a lack of tools to study them in vivo. Preclinical and post-mortem human investigations indicate that the relationship between tissue neuromelanin content and neurodegeneration is complex. Neuromelanin exhibits both neuroprotective and cytotoxic characteristics, and tissue neuromelanin content varies across the lifespan, exhibiting an inverted U-shaped relationship with age. Neuromelanin-sensitive MRI (NM-MRI) is an emerging modality that allows measurement of neuromelanin-associated contrast in SNc and LC in humans. NM-MRI robustly detects disease effects in these structures in neurodegenerative and psychiatric conditions, including Parkinson's disease (PD). Previous NM-MRI studies of PD have largely focused on detecting disease group effects, but few studies have reported NM-MRI correlations with phenotype. Because neuromelanin dynamics are complex, we hypothesize that they are best interpreted in the context of both disease stage and aging, with neuromelanin loss correlating with symptoms most clearly in advanced stages where neuromelanin loss and neurodegeneration are coupled. We tested this hypothesis using NM-MRI to measure SNc and LC volumes in healthy older adult control individuals and in PD patients with and without freezing of gait (FOG), a severe and disabling PD symptom. We assessed for group differences and correlations between NM-MRI measures and aging, cognition and motor deficits. SNc volume was significantly decreased in PD with FOG compared to controls. SNc volume correlated significantly with motor symptoms and cognitive measures in PD with FOG, but not in PD without FOG. SNc volume correlated significantly with aging in PD. When PD patients were stratified by disease duration, SNc volume correlated with aging, cognition, and motor deficits only in PD with disease duration >5 years. We conclude that in severe or advanced PD, identified by either FOG or disease duration >5 years, the observed correlations between SNc volume and aging, cognition, and motor function may reflect the coupling of neuromelanin loss with neurodegeneration and the associated emergence of a linear relationship between NM-MRI measures and phenotype.
RESUMO
Patients with Parkinson's disease undergo a loss of melanized neurons in substantia nigra pars compacta and locus coeruleus. Very few studies have assessed substantia nigra pars compacta and locus coeruleus pathology in Parkinson's disease simultaneously with magnetic resonance imaging (MRI). Neuromelanin-sensitive MRI measures of substantia nigra pars compacta and locus coeruleus volume based on explicit magnetization transfer contrast have been shown to have high scan-rescan reproducibility in controls, but no study has replicated detection of Parkinson's disease-associated volume loss in substantia nigra pars compacta and locus coeruleus in multiple cohorts with the same methodology. Two separate cohorts of Parkinson's disease patients and controls were recruited from the Emory Movement Disorders Clinic and scanned on two different MRI scanners. In cohort 1, imaging data from 19 controls and 22 Parkinson's disease patients were acquired with a Siemens Trio 3 Tesla scanner using a 2D gradient echo sequence with magnetization transfer preparation pulse. Cohort 2 consisted of 33 controls and 39 Parkinson's disease patients who were scanned on a Siemens Prisma 3 Tesla scanner with a similar imaging protocol. Locus coeruleus and substantia nigra pars compacta volumes were segmented in both cohorts. Substantia nigra pars compacta volume (Cohort 1: p = 0.0148; Cohort 2: p = 0.0011) and locus coeruleus volume (Cohort 1: p = 0.0412; Cohort 2: p = 0.0056) were significantly reduced in the Parkinson's disease group as compared to controls in both cohorts. This imaging approach robustly detects Parkinson's disease effects on these structures, indicating that it is a promising marker for neurodegenerative neuromelanin loss.
Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/patologia , Reprodutibilidade dos Testes , Substância Negra/diagnóstico por imagem , Substância Negra/patologia , Melaninas/química , Imageamento por Ressonância Magnética/métodosRESUMO
OBJECTIVE: Rapid eye movement (REM) sleep behavior disorder (RBD) is widely considered a prodromal synucleinopathy, as most with RBD develop overt synucleinopathy within ~10 years. Accordingly, RBD offers an opportunity to test potential treatments at the earliest stages of synucleinopathy. The North American Prodromal Synucleinopathy (NAPS) Consortium has created a multisite RBD participant, primarily clinic-based cohort to better understand characteristics at diagnosis, and in future work, identify predictors of phenoconversion, develop synucleinopathy biomarkers, and enable early stage clinical trial enrollment. METHODS: Participants ≥18 years of age with overnight polysomnogram-confirmed RBD without Parkinson's disease, dementia, multiple system atrophy, or narcolepsy were enrolled from nine sites across North America (8/2018 to 4/2021). Data collection included family/personal history of RBD and standardized assessments of cognitive, motor, sensory, and autonomic function. RESULTS: Outcomes are primarily reported based on sex (361 total: n = 295 male, n = 66 female), and secondarily based on history of antidepressant use (n = 200 with, n = 154 without; with correction for sex differences) and based on extent of synucleinopathy burden (n = 56 defined as isolated RBD, n = 305 defined as RBD+ [i.e., exhibiting ≥1 abnormality]). Overall, these participants commonly demonstrated abnormalities in global cognition (MoCA; 38%), motor function (alternate tap test; 48%), sensory (BSIT; 57%), autonomic function (orthostatic hypotension, 38.8%), and anxiety/depression (BAI and PHQ-9; 39.3% and 31%, respectively). INTERPRETATION: These RBD participants, assessed with extensive history, demographic, cognitive, motor, sensory, and autonomic function demonstrated a lack of sex differences and high frequency of concomitant neurological abnormalities. These participants will be valuable for future longitudinal study and neuroprotective clinical trials.
Assuntos
Doença por Corpos de Lewy , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Transtorno do Comportamento do Sono REM , Sinucleinopatias , Feminino , Humanos , Masculino , Doença por Corpos de Lewy/diagnóstico , Estudos Longitudinais , Atrofia de Múltiplos Sistemas/complicações , Transtorno do Comportamento do Sono REM/complicaçõesRESUMO
Substantia nigra pars compacta (SNc) and locus coeruleus (LC) are neuromelanin-rich nuclei implicated in diverse cognitive and motor processes in normal brain function and disease. However, their roles in aging and neurodegenerative disease mechanisms have remained unclear due to a lack of tools to study them in vivo. Preclinical and post-mortem human investigations indicate that the relationship between tissue neuromelanin content and neurodegeneration is complex. Neuromelanin exhibits both neuroprotective and cytotoxic characteristics, and tissue neuromelanin content varies across the lifespan, exhibiting an inverted U-shaped relationship with age. Neuromelanin-sensitive MRI (NM-MRI) is an emerging modality that allows measurement of neuromelanin-associated contrast in SNc and LC in humans. NM-MRI robustly detects disease effects in these structures in neurodegenerative conditions, including Parkinson's disease (PD). Previous NM-MRI studies of PD have largely focused on detecting disease group effects, but few studies have reported NM-MRI correlations with phenotype. Because neuromelanin dynamics are complex, we hypothesize that they are best interpreted in the context of both disease stage and aging, with neuromelanin loss correlating with symptoms most clearly in advanced stages where neuromelanin loss and neurodegeneration are coupled. We tested this hypothesis using NM-MRI to measure SNc and LC volumes in healthy older adult control individuals and in PD patients with and without freezing of gait (FOG), a severe and disabling PD symptom. We assessed for group differences and correlations between NM-MRI measures and aging, cognition and motor deficits. SNc volume was significantly decreased in PD with FOG compared to controls. SNc volume correlated significantly with motor symptoms and cognitive measures in PD with FOG, but not in PD without FOG. SNc volume correlated significantly with aging in PD. When PD patients were stratified by disease duration, SNc volume correlated with aging, cognition, and motor deficits only in PD with disease duration >5 years. We conclude that in severe or advanced PD, identified by either FOG or disease duration >5 years, the observed correlations between SNc volume and aging, cognition, and motor function may reflect the coupling of neuromelanin loss with neurodegeneration and the associated emergence of a linear relationship between NM-MRI measures and phenotype.
RESUMO
Introduction: Striatal dopamine transporter (DAT) imaging using 123I-ioflupane single photon positron emitted computed tomography (SPECT) (DaTScan, GE) identifies 5-20% of newly diagnosed Parkinson's disease (PD) subjects enrolling in clinical studies to have scans without evidence of dopaminergic deficit (SWEDD). These individuals meet diagnostic criteria for PD, but do not clinically progress as expected, and they are not believed to have neurodegenerative Parkinsonism. Inclusion of SWEDD participants in PD biomarker studies or therapeutic trials may therefore cause them to fail. DaTScan can identify SWEDD individuals, but it is expensive and not widely available; an alternative imaging approach is needed. Here, we evaluate the use of neuromelanin-sensitive, iron-sensitive, and diffusion contrasts in substantia nigra pars compacta (SNpc) to differentiate SWEDD from PD individuals. Methods: Neuromelanin-sensitive, iron-sensitive, and diffusion imaging data for SWEDD, PD, and control subjects were downloaded from the Parkinson's progression markers initiative (PPMI) database. SNpc volume, SNpc iron (R 2), and SNpc free water (FW) were measured for each participant. Results: Significantly smaller SNpc volume was seen in PD as compared to SWEDD (P < 10-3) and control (P < 10-3) subjects. SNpc FW was elevated in the PD group relative to controls (P = 0.017). No group difference was observed in SNpc R 2. Conclusion: In conclusion, nigral volume and FW in the SWEDD group were similar to that of controls, while a reduction in nigral volume and increased FW were observed in the PD group relative to SWEDD and control participants. These results suggest that these MRI measures should be explored as a cost-effective alternative to DaTScan for evaluation of the nigrostriatal system.
RESUMO
Introduction: Locus coeruleus (LC) is the primary source of norepinephrine to the brain and its efferent projections innervate many brain regions, including the thalamus. The LC degrades with normal aging, but not much is known regarding whether its structural connectivity evolves with age or predicts aspects of cognition. Methods: Here, we use high-resolution diffusion tensor imaging-based tractography to examine structural connectivity between LC and the thalamus in younger and older adults. Results: We found LC projections to be bundled in a fiber tract anatomically consistent with the central tegmental tract (CTT) and branched from this tract into the thalamus. The older cohort exhibited a significant reduction in mean and radial diffusivity within CTT, as compared with the young cohort. We also observed a significant correlation between CTT mean, axial, and radial diffusivities and memory performance (delayed recall) in the older adult cohort. Discussion: These observations suggest that although LC projections degrade with age, the degree of degradation is associated with cognitive abilities in older adults. Impact statement Locus coeruleus (LC) modulates several cognitive processes, including modulating arousal, attention modulation, and memory. Sustaining the integrity of LC neurons is hypothesized to play a key role in staving off age-related cognitive decline. However, less is known about how efferent projections of LC change with age or cognition. Here, we examine how age affects the microstructure of the central tegmental tract, a fiber tract in which LC efferent projections are bundled, and whether age-related changes in the microstructure of this tract are associated with cognitive decline.
Assuntos
Imagem de Tensor de Difusão , Locus Cerúleo , Idoso , Envelhecimento/fisiologia , Encéfalo/diagnóstico por imagem , Cognição , Humanos , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/fisiologiaRESUMO
The loss of melanized neurons in the substantia nigra pars compacta is a primary feature in Parkinson's disease. Iron deposition occurs in conjunction with this loss. Loss of nigral neurons should remove barriers for diffusion and increase diffusivity of water molecules in regions undergoing this loss. In metrics from single-compartment diffusion tensor imaging models, these changes should manifest as increases in mean diffusivity and reductions in fractional anisotropy as well as increases in the free water compartment in metrics derived from bi-compartment models. However, studies examining nigral diffusivity changes from Parkinson's disease with single-compartment models have yielded inconclusive results and emerging evidence in control subjects indicates that iron corrupts diffusivity metrics derived from single-compartment models. We aimed to examine Parkinson's disease-related changes in nigral iron and diffusion measures from single- and bi-compartment models as well as assess the effect of iron on these diffusion measures in two separate Parkinson's cohorts. Iron-sensitive data and diffusion data were analysed in two cohorts: First, a discovery cohort consisting of 71 participants (32 control participants and 39 Parkinson's disease participants) was examined. Second, an external validation cohort, obtained from the Parkinson's Progression Marker's Initiative, consisting of 110 participants (58 control participants and 52 Parkinson's disease participants) was examined. The effect of iron on diffusion measures from single- and bi-compartment models was assessed in both cohorts. Measures sensitive to the free water compartment (discovery cohort: P = 0.006; external cohort: P = 0.01) and iron content (discovery cohort: P < 0.001; validation cohort: P = 0.02) were found to increase in substantia nigra of the Parkinson's disease group in both cohorts. However, diffusion markers derived from the single-compartment model (i.e. mean diffusivity and fractional anisotropy) were not replicated across cohorts. Correlations were seen between single-compartment diffusion measures and iron markers in the discovery cohort (iron-mean diffusivity: r = -0.400, P = 0.006) and validation cohort (iron-mean diffusivity: r = -0.387, P = 0.003) but no correlation was observed between a measure from the bi-compartment model related to the free water compartment and iron markers in either cohort. In conclusion, the variability of nigral diffusion metrics derived from the single-compartment model in Parkinson's disease may be attributed to competing influences of increased iron content, which tends to drive diffusivity down, and increases in the free water compartment, which tends to drive diffusivity up. In contrast to diffusion metrics derived from the single-compartment model, no relationship was seen between iron and the free water compartment in substantia nigra.
RESUMO
The Lewy Body Dementia Association (LBDA) held a virtual event, the LBDA Biofluid/Tissue Biomarker Symposium, on January 25, 2021, to present advances in biomarkers for Lewy body dementia (LBD), which includes dementia with Lewy bodies (DLBs) and Parkinson's disease dementia (PDD). The meeting featured eight internationally known scientists from Europe and the United States and attracted over 200 scientists and physicians from academic centers, the National Institutes of Health, and the pharmaceutical industry. Methods for confirming and quantifying the presence of Lewy body and Alzheimer's pathology and novel biomarkers were discussed.
RESUMO
Muscular dystrophy has been an elusive term ever since it was first described in the 19th century. Introduced in 1891 by Wilhelm Heinrich Erb, muscular dystrophy has been classified as part of a larger group of genetically determined, progressive degenerative neuromuscular disorders termed "dystrophinopathies." Cardiac arrhythmias may occur during the neurologic course of the disease. Although descriptions of the dystrophinopathies have been reported in the literature, few articles address the use of antiarrhythmic pharmacotherapy in patients with muscular dystrophy. We discuss the pathophysiology of the most common dystrophinopathies, their proarrhythmic sequelae, and the therapeutic use of antiarrhythmic agents in the clinical setting.
Assuntos
Distrofia Muscular de Duchenne , Arritmias Cardíacas/etiologia , HumanosRESUMO
Parkinson's disease (PD), an intractable condition impairing motor and cognitive function, is imperfectly treated by drugs and surgery. Two priority issues for many people with PD are OFF-time and cognitive impairment. Even under best medical management, three-fourths of people with PD experience "OFF-time" related to medication-related motor fluctuations, which severely impacts both quality of life and cognition. Cognitive deficits are found even in newly diagnosed people with PD and are often intractable. Our data suggest that partnered dance aerobic exercise (PDAE) reduces OFF-time on the Movement Disorders Society Unified Parkinson Disease Rating Scale-IV (MDS-UPDRS-IV) and ameliorates other disease features, which motivate the PAIRED trial. PDAE provides AE during an improvisational, cognitively engaging rehabilitative physical activity. Although exercise benefits motor and cognitive symptoms and may be neuroprotective for PD, studies using robust biomarkers of neuroprotection in humans are rare. We propose to perform a randomized, controlled trial in individuals with diagnosed mild-moderate PD to compare the efficacy of PDAE vs. walking aerobic exercise (WALK) for OFF-time, cognition, and neuroprotection. We will assess neuroprotection with neuromelanin-sensitive MRI (NM-MRI) and iron-sensitive (R2*) MRI sequences to quantify neuromelanin loss and iron accumulation in substantia nigra pars compacta (SNc). We will use these biomarkers, neuromelanin loss, and iron accumulation, as tools to chart the course of neurodegeneration in patients with PD who have undergone long-term (16 months) intervention. We will randomly assign 102 individuals with mild-moderate PD to 16 months of PDAE or WALK. The 16-month intervention period will consist of Training (3 months of biweekly sessions) and Maintenance (13 months of weekly sessions) phases. We will assess participants at baseline, 3 months (immediately post-Training), and 16 months (immediately post-Maintenance) for OFF-time and behaviorally and physiologically measured cognition. We will acquire NM-MRI and R2* imaging data at baseline and 16 months to assess neuroprotection. We will (1) examine effects of Training and Maintenance phases of PDAE vs. WALK on OFF-time, (2) compare PDAE vs. WALK at 3 and 16 months on behavioral and functional MRI (fMRI) measures of spatial cognition, and (3) compare PDAE vs. WALK for effects on rates of neurodegeneration.
RESUMO
BACKGROUND: Approximately forty percent of all dopaminergic neurons in SNpc are located in five dense neuronal clusters, named nigrosomes. T2- or T2*-weighted images are used to delineate the largest nigrosome, named nigrosome-1. In these images, nigrosome-1 is a hyperintense region in the caudal and dorsal portion of the T2- or T2*-weighted substantia nigra. In PD, nigrosome-1 experiences iron accumulation, which leads to a reduction in T2-weighted hyperintensity. Here, we examine neuromelanin-depletion and iron deposition in regions of interest (ROIs) derived from quantitative-voxel based morphometry (qVBM) on neuromelanin-sensitive images and compare the ROIs with nigrosome-1 identified in T2*-weighted images. METHODS: Neuromelanin-sensitive and multi-echo gradient echo imaging data were obtained. R2* was calculated from multi-echo gradient echo imaging data. qVBM analysis was performed on neuromelanin-sensitive images and restricted to SNpc. Mean neuromelanin-sensitive contrast and R2* was measured from the resulting qVBM clusters. Nigrosome-1 was segmented in T2*-weighted images of control subjects and its location was compared to the spatial location of the qVBM clusters. RESULTS: Two bilateral clusters emerged from the qVBM analysis. These clusters showed reduced neuromelanin-sensitive contrast and increased mean R2* in PD as compared to controls. Cluster-1 from the qVBM analysis was in a similar spatial location as nigrosome-1, as seen in T2*-weighted images. CONCLUSION: qVBM cluster-1 shows reduced neuromelanin-sensitive contrast and is in a similar spatial position as nigrosome-1. This region likely corresponds to nigrosome-1 while the second cluster may correspond to nigrosome-2.
Assuntos
Neurônios Dopaminérgicos/patologia , Imageamento por Ressonância Magnética , Melaninas/metabolismo , Neuroimagem , Doença de Parkinson/patologia , Substância Negra/patologia , Idoso , Atlas como Assunto , Neurônios Dopaminérgicos/metabolismo , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Substância Negra/diagnóstico por imagem , Substância Negra/metabolismoRESUMO
BACKGROUND: To date there are no validated MRI biomarkers to assist diagnosis of Parkinson's disease (PD). Our aim was to investigate PD related iron changes in the substantia nigra pars compacta (SNpc) as defined by neuromelanin-sensitive MR contrast. METHODS: Thirty-nine PD participants and 33 healthy controls were scanned at 3.0-T using a 16-echo gradient echo sequence to create R2* maps for the evaluation of iron content to find the overlap with a neuromelanin based SNpc mask. The SNpc overlap percentage with the R2* map, and the R2* values in both the whole SNpc and the overlap volume were compared between PD and control groups, and correlated with clinical features for PD participants. Finally, the diagnostic performance of the SNpc overlap percentage was evaluated using ROC analysis. RESULTS: PD related iron changes mostly occur in the lateral-ventral part of the neuromelanin SNpc. The R2* values in the whole SNpc and the SNpc overlap volume, and the SNpc overlap percentage were larger in PD participants than in controls. Furthermore, the SNpc overlap percentage was positively correlated with the disease duration in PD. The SNpc overlap percentage provided excellent diagnostic accuracy for discriminating PD participants from controls (AUC = 0.93), while the R2* values in the whole SNpc or the overlap volume were less effective. CONCLUSION: The overlap between the iron content as determined by R2* mapping and neuromelanin in the substantia nigra pars compacta has the potential to be a neuroimaging biomarker for diagnosing Parkinson's disease.
Assuntos
Doença de Parkinson , Parte Compacta da Substância Negra , Biomarcadores , Humanos , Ferro , Imageamento por Ressonância Magnética , Neuroimagem , Doença de Parkinson/diagnóstico por imagem , Substância Negra/diagnóstico por imagemRESUMO
The first Lewy Body Dementia Association (LBDA) Research Centers of Excellence (RCOE) Investigator's meeting was held on December 14, 2017, in New Orleans. The program was established to increase patient access to clinical experts on Lewy body dementia (LBD), which includes dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD), and to create a clinical trials-ready network. Four working groups (WG) were created to pursue the LBDA RCOE aims: (1) increase access to high-quality clinical care, (2) increase access to support for people living with LBD and their caregivers, (3) increase knowledge of LBD among medical and allied (or other) professionals, and (4) create infrastructure for a clinical trials-ready network as well as resources to advance the study of new therapeutics.
Assuntos
Pesquisa Biomédica/normas , Ensaios Clínicos como Assunto/normas , Congressos como Assunto/normas , Doença por Corpos de Lewy/terapia , Pesquisa Biomédica/métodos , Ensaios Clínicos como Assunto/métodos , Humanos , Doença por Corpos de Lewy/diagnóstico , Doença por Corpos de Lewy/epidemiologia , Nova OrleansRESUMO
BACKGROUND: Previous studies investigating nigral iron accumulation used T2 or T2 *-weighted contrasts to define the regions of interest (ROIs) in the substantia nigra with mixed results. Because these contrasts are not sensitive to neuromelanin, ROIs may have inadvertently missed the SNpc. An approach sensitive to neuromelanin should yield consistent results. We examine iron deposition in ROIs derived from neuromelanin-sensitive and T2 *-weighted contrasts, respectively. METHODS: T1 -weighted and multiecho gradient echo imaging data were obtained in 2 cohorts. Multiecho gradient echo imaging data were analyzed using neuromelanin-sensitive SNpc ROIs as well as T2 *-weighted SNr ROIs. RESULTS: When compared with controls, significantly larger R2 * values were seen in the SNpc of PD patients in both cohorts. Mean R2 * values in the SNr of PD patients showed no consistency, with 1 cohort showing a small, statistically significant increase, whereas the other cohort exhibited no statistical difference. CONCLUSION: Mean R2 * in the SNpc defined by neuromelanin-sensitive MRI is significantly increased in PD. © 2018 International Parkinson and Movement Disorder Society.
Assuntos
Ferro/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Melaninas , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Substância Negra/diagnóstico por imagem , Substância Negra/patologiaRESUMO
Cloud-based computing has created new avenues for innovative research. In recent years, numerous cloud-based, data analysis projects within the biomedical domain have been implemented. As this field is likely to grow, there is a need for a unified platform for the developing and testing of advanced analytic and modeling tools that enables those tools to be easily reused for biomedical data analysis by a broad set of users with diverse technical skills. A cloud-based platform of this nature could greatly assist future research endeavors. In this paper, we take the first step towards building such a platform. We define an approach by which containerized analytic pipelines can be distributed for use on cloud-based or on-premise computing platforms. We demonstrate our approach by implementing a portable biomarker identification pipeline using a logistic regression model with elastic net regularization (LR-ENR) and running it on Google Cloud. We used this pipeline for the diagnosis of Parkinson's disease based on a combination of clinical, demographic, and MRI-based features and for the identification of the most predictive biomarkers.