Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(14): 21752-21764, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38393570

RESUMO

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is routinely used as a rapid and cost-effective method for pathogen identification in clinical settings. In comparison, its performance in other microbiological fields, such as environmental microbiology, is still being tested, although isolates of environmental microbes are essential for in-depth in vivo studies of their biology, including biotechnological applications. We investigated the applicability of MALDI-TOF MS for the identification of bacterial isolates from a highly oligotrophic environment - Dinaric Karst caves, which likely harbor specific microorganisms. We cultured bacteria from the shell surface of the endemic mussel Congeria jalzici, one of the three known cave mussels in the world that lives in the Dinaric karst underground. The bacterial isolates were obtained by swabbing the shell surface of mussels living in microhabitats with different amounts of water: 10 air-exposed mussels, 10 submerged mussels, and 10 mussels in the hygropetric zone. A collection of 87 pure culture isolates was obtained, mostly belonging to the phylum Bacillota (72%), followed by Pseudomonadota (16%), Actinomycetota (11%), and Bacteroidota (1%). We compared the results of MALDI-TOF MS identification (Bruker databases DB-5989 and version 11, v11) with the results of 16S rDNA-based phylogenetic analysis, a standard procedure for bacterial identification. Identification to the genus level based on 16S rDNA was possible for all isolates and clearly outperformed the results from MALDI-TOF MS, although the updated MALDI-TOF MS database v11 gave better results than the DB-5989 version (85% versus 62%). However, identification to the species-level by 16S rDNA sequencing was achieved for only 17% of isolates, compared with 14% and 40% for the MALDI-TOF MS databases DB-5989 and v11 database, respectively. In conclusion, our results suggest that continued enrichment of MALDI-TOF MS libraries will result with this method soon becoming a rapid, accurate, and efficient tool for assessing the diversity of culturable bacteria from different environmental niches.


Assuntos
Bivalves , Cavernas , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Filogenia , Bactérias/genética , DNA Ribossômico
2.
J Invertebr Pathol ; 202: 108039, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38097037

RESUMO

The microbiome influences a variety of host-environment interactions, and there is mounting evidence of its significant role in biological invasions. During invasion, shifts in microbial diversity and function can occur due to both changing characteristics of the novel environment and physiological condition of the host. The signal crayfish (Pacifastacus leniusculus) is one of the most successful crayfish invaders in Europe. During range expansion, its populations often exhibit differences in many traits along the invasion range, including sex-composition, size-structure and aggressiveness, but to date it was not studied whether crayfish traits can also drive changes in the host microbiome. Thus, we used 16S rRNA gene amplicon sequencing to examine the effects of host-related traits, namely total length (TL), body condition index (FCF), hepatosomatic index (HSI) and sex on the microbial diversity of the signal crayfish. We examined both external (exoskeletal) and internal (intestinal, hepatopancreatic, hemolymph) microbiomes of 110 signal crayfish individuals from four sites along its invasion range in the Korana River, Croatia. While sex did not exhibit a significant effect on the microbial diversity in any of the examined tissues, exoskeletal, intestinal and hemolymph microbial diversity significantly decreased with increasing crayfish size. Additionally, significant effects of signal crayfish condition (FCF, HSI) on microbial diversity were recorded in the hepatopancreas, a main energy storage organ in crayfish that supports reproduction and growth and also regulates immune response. Our findings provide a baseline for evaluating the contribution of microbiome to an invader's overall health, fitness and subsequent invasion success.


Assuntos
Astacoidea , Humanos , Animais , RNA Ribossômico 16S/genética , Europa (Continente) , Croácia
3.
J Invertebr Pathol ; 201: 107996, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783231

RESUMO

Host-associated microbial communities are an important determinant of individual fitness and have recently been highlighted as one of the factors influencing the success of invasive species. Invasive hosts introduce their microbes into the new environment, and then both the host and its associated microbes enter into a series of interactions with the native macroscopic and microscopic biota. As these processes are largely unexplored, we aimed to compare the exoskeletal microbial communities of co-occurring and phylogenetically related crayfish: the native narrow-clawed crayfish Pontastacus leptodactylus and the invasive signal crayfish Pacifastacus leniusculus from the recently invaded Korana River, Croatia. The results of high-throughput 16S rRNA sequencing showed that the exoskeletal microbiome of both species is very diverse, significantly influenced by the local environment and dominated by low abundance bacterial families from the phylum Proteobacteria. Furthermore, the exoskeletal microbiomes of the crayfish species differed significantly in the composition and abundance of Amplicon Sequence Variants (ASVs), suggesting that they are to some extent shaped by species-specific intrinsic factors, despite sharing a common habitat. However, over 95% of the bacterial genera associated with the exoskeleton were detected in the exoskeleton samples of both native and invasive crayfish. We paid particular attention to two known crayfish pathogens, Aphanomyces astaci and Saprolegnia parasitica, and find that both species carry low amounts of both pathogens. On the side, we find that a non-standard ddPCR protocol outperforms standard qPCR test for A. astaci under low concentration conditions. Taken together, our results indicate the possibility of bidirectional mixing and homogenisation of exoskeleton microbiome. As such, they can serve as a baseline in future detangling of the processes that act together to shape the microbiomes of co-occuring native and invasive congeners during biological invasions.


Assuntos
Aphanomyces , Exoesqueleto Energizado , Microbiota , Humanos , Animais , Astacoidea/microbiologia , Espécies Introduzidas , RNA Ribossômico 16S/genética , Aphanomyces/genética
4.
Anim Microbiome ; 5(1): 23, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041598

RESUMO

BACKGROUND: The microbiome plays an important role in biological invasions, since it affects various interactions between host and environment. However, most studies focus on the bacteriome, insufficiently addressing other components of the microbiome such as the mycobiome. Microbial fungi are among the most damaging pathogens in freshwater crayfish populations, colonizing and infecting both native and invasive crayfish species. Invading crayfish may transmit novel fungal species to native populations, but also, dispersal process and characteristics of the novel environment may affect the invaders' mycobiome composition, directly and indirectly affecting their fitness and invasion success. This study analyzes the mycobiome of a successful invader in Europe, the signal crayfish, using the ITS rRNA amplicon sequencing approach. We explored the mycobiomes of crayfish samples (exoskeletal biofilm, hemolymph, hepatopancreas, intestine), compared them to environmental samples (water, sediment), and examined the differences in fungal diversity and abundance between upstream and downstream segments of the signal crayfish invasion range in the Korana River, Croatia. RESULTS: A low number of ASVs (indicating low abundance and/or diversity of fungal taxa) was obtained in hemolymph and hepatopancreas samples. Thus, only exoskeleton, intestine, sediment and water samples were analyzed further. Significant differences were recorded between their mycobiomes, confirming their uniqueness. Generally, environmental mycobiomes showed higher diversity than crayfish-associated mycobiomes. The intestinal mycobiome showed significantly lower richness compared to other mycobiomes. Significant differences in the diversity of sediment and exoskeletal mycobiomes were recorded between different river segments (but not for water and intestinal mycobiomes). Together with the high observed portion of shared ASVs between sediment and exoskeleton, this indicates that the environment (i.e. sediment mycobiome) at least partly shapes the exoskeletal mycobiome of crayfish. CONCLUSION: This study presents the first data on crayfish-associated fungal communities across different tissues, which is valuable given the lack of studies on the crayfish mycobiome. We demonstrate significant differences in the crayfish exoskeletal mycobiome along the invasion range, suggesting that different local environmental conditions may shape the exoskeletal mycobiome during range expansion, while the mycobiome of the internal organ (intestine) remained more stable. Our results provide a basis for assessing how the mycobiome contributes to the overall health of the signal crayfish and its further invasion success.

5.
Sci Rep ; 12(1): 16646, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198674

RESUMO

Saprolegnia parasitica causes saprolegniosis, a disease responsible for significant economic losses in aquaculture and declines of fish populations in the wild, but the knowledge of its distribution and prevalence in the environment is limited. We developed a fast, sensitive and specific S. parasitica droplet digital PCR (ddPCR) assay and demonstrated its applicability for the detection and quantification of the pathogen in environmental samples: swab DNA collected from the host (trout skin, surface of eggs) and environmental DNA extracted from water. The developed assay was used to assess how abiotic (i.e. physico-chemical parameters of the water) and biotic (health status of the host) factors influence the S. parasitica load in the environment. The pathogen load in water samples was positively correlated with some site-specific abiotic parameters such as electrical conductivity (EC) and calcium, while fluorides were negatively correlated, suggesting that physico-chemical parameters are important for determining S. parasitica load in natural waters. Furthermore, skin swabs of injured trout had significantly higher pathogen load than swabs collected from healthy fish, confirming that S. parasitica is a widespread opportunistic pathogen. Our results provide new insights into various environmental factors that influence the distribution and abundance of S. parasitica.


Assuntos
DNA Ambiental , Doenças dos Peixes , Saprolegnia , Animais , Aquicultura , Cálcio , Doenças dos Peixes/epidemiologia , Fluoretos , Saprolegnia/genética , Truta/genética , Água
6.
Conserv Physiol ; 10(1): coac031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669378

RESUMO

Crayfish are keystone species important for maintaining healthy freshwater ecosystems. Crayfish species native to Europe, such as Astacus astacus and Austropotamobius torrentium, are facing decline and are increasingly endangered by changing climate and invasions of non-native crayfish, such as Pacifastacus leniusculus and Procambarus virginalis. The success of these invasions largely depends on differences in ontogeny between the native species and the invaders and how changes in the environment will affect the ontogeny. Dynamic Energy Budget (DEB) models can be used to investigate such differences because the models capture dependence of metabolism, and therefore ontogeny, on environmental conditions. We develop DEB models for all four species and investigate key elements of ontogeny and metabolism affecting interspecific competition. We then use the DEB models to predict individual growth and reproduction in current and new conditions that are expected to arise from climate change. Although observations suggest that P. leniusculus poses the major threat to native species, our analysis identifies P. virginalis, in spite of its smaller size, as the superior competitor by a large margin-at least when considering metabolism and ontogeny. Our simulations show that climate change is set to increase the competitive edge of P. virginalis even further. Given the prospects of P. virginalis dominance, especially when considering that it is able to withstand and spread at least some crayfish plague strains that severely affect native species, additional research into P. virginalis is necessary.

7.
J Fish Dis ; 45(2): 261-276, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34751441

RESUMO

As the most successful crayfish invader and possible vector for infectious agents, signal crayfish Pacifastacus leniusculus is among the major drivers of the native crayfish species decline in Europe. We describe histopathological manifestation and frequency of newly detected idiopathic necrotizing hepatopancreatitis along the invasion range of the signal crayfish in the Korana River in Croatia. Our results show extremely high prevalence of necrotizing hepatopancreatitis (97.3%), with 58.9% of individuals displaying mild and 31.5% moderate histopathological changes in the hepatopancreas, also reflected in the lower hepatosomatic index of analysed animals. Recorded histopathological changes were more frequent in the invasion core where population density is higher. Our preliminary screening of co-occurring native narrow-clawed crayfish Pontastacus leptodactylus showed lower incidence (33.3%) and only mild hepatopancreatic lesions, but potentially highlighted the susceptibility of native crayfish populations to this disease. Pilot analyses of dissolved trace and macro elements in water, sediment fractions and crayfish hepatopancreas do not highlight alarming or unusually high concentrations of analysed elements. Hepatopancreas microbiome analysis, using 16S rRNA gene amplicon sequencing, identified taxonomic groups that should be further investigated, along with impacts of the disease on health and viability of both invasive and native crayfish populations.


Assuntos
Astacoidea , Doenças dos Peixes , Animais , Croácia/epidemiologia , RNA Ribossômico 16S , Alimentos Marinhos
8.
Biology (Basel) ; 10(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34827095

RESUMO

Immunity is an important component of invasion success since it enables invaders' adaptation to conditions of the novel environment as they expand their range. Immune response of invaders may vary along the invasion range due to encountered parasites/microbial communities, conditions of the local environment, and ecological processes that arise during the range expansion. Here, we analyzed changes in the immune response along the invasion range of one of the most successful aquatic invaders, the signal crayfish, in the recently invaded Korana River, Croatia. We used several standard immune parameters (encapsulation response, hemocyte count, phenoloxidaze activity, and total prophenoloxidaze) to: i) compare immune response of the signal crayfish along its invasion range, and between species (comparison with co-occurring native narrow-clawed crayfish), and ii) analyze effects of specific predictors (water temperature, crayfish abundance, and body condition) on crayfish immune response changes. Immune response displayed species-specificity, differed significantly along the signal crayfish invasion range, and was mostly affected by water temperature and population abundance. Specific immune parameters showed density-dependent variation corresponding to increased investment in them during range expansion. Obtained results offer baseline insights for elucidating the role of immunocompetence in the invasion success of an invertebrate freshwater invader.

9.
Viruses ; 13(11)2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34835065

RESUMO

Crayfish are a keystone species of freshwater ecosystems and a successful invasive species. However, their pathogens, including viruses, remain understudied. The aim of this study was to analyze the virome of the invasive signal crayfish (Pacifastacus leniusculus) and to elucidate the potential differences in viral composition and abundance along its invasion range in the Korana River, Croatia. By the high-throughput sequencing of ribosomal RNA, depleted total RNA isolated from the crayfish hepatopancreas, and subsequent sequence data analysis, we identified novel and divergent RNA viruses, including signal crayfish-associated reo-like, hepe-like, toti-like, and picorna-like viruses, phylogenetically related to viruses previously associated with crustacean hosts. The patterns of reads abundance and calculated nucleotide diversities of the detected viral sequences varied along the invasion range. This could indicate the possible influence of different factors and processes on signal crayfish virome composition: e.g., the differences in signal crayfish population density, the non-random dispersal of host individuals from the core to the invasion fronts, and the transfer of viruses from the native co-occurring and phylogenetically related crayfish species. The study reveals a high, previously undiscovered diversity of divergent RNA viruses associated with signal crayfish, and sets foundations for understanding the potential risk of virus transmissions as a result of this invader's dispersal.


Assuntos
Astacoidea/virologia , Espécies Introduzidas , Vírus de RNA/genética , Viroma/genética , Animais , Croácia , Monitoramento Ambiental , Variação Genética , Genoma Viral/genética , Hepatopâncreas/virologia , Filogenia , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , RNA Viral/genética , Rios , Análise de Sequência de DNA
10.
Microbiol Spectr ; 9(2): e0038921, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34494878

RESUMO

Increasing evidence denotes the role of the microbiome in biological invasions, since it is known that microbes can affect the fitness of the host. Here, we demonstrate differences in the composition of an invader's microbiome along the invasion range, suggesting that its microbial communities may affect and be affected by range expansion. Using a 16S rRNA gene amplicon sequencing approach, we (i) analyzed the microbiomes of different tissues (exoskeleton, hemolymph, hepatopancreas, and intestine) of a successful freshwater invader, the signal crayfish, (ii) compared them to the surrounding water and sediment, and (iii) explored their changes along the invasion range. Exoskeletal, hepatopancreatic, and intestinal microbiomes varied between invasion core and invasion front populations. This indicates that they may be partly determined by population density, which was higher in the invasion core than in the invasion front. The highly diverse microbiome of exoskeletal biofilm was partly shaped by the environment (due to the similarity with the sediment microbiome) and partly by intrinsic crayfish parameters (due to the high proportion of exoskeleton-unique amplicon sequence variants [ASVs]), including the differences in invasion core and front population structure. Hemolymph had the most distinct microbiome compared to other tissues and differed between upstream (rural) and downstream (urban) river sections, indicating that its microbiome is potentially more driven by the effects of the abiotic environment. Our findings offer an insight into microbiome changes during dispersal of a successful invader and present a baseline for assessment of their contribution to an invader's overall health and its further invasion success. IMPORTANCE Invasive species are among the major drivers of biodiversity loss and impairment of ecosystem services worldwide, but our understanding of their invasion success and dynamics still has many gaps. For instance, although it is known that host-associated microbial communities may significantly affect an individual's health and fitness, the current studies on invasive species are mainly focused on pathogenic microbes, while the effects of the remaining majority of microbial communities on the invasion process are almost completely unexplored. We have analyzed the microbiome of one of the most successful crayfish invaders in Europe, the signal crayfish, and explored its changes along the signal crayfish invasion range in the Korana River, Croatia. Our study sets the perspective for future research required to assess the contribution of these changes to an individual's overall health status and resilience of dispersing populations and their impact on invasion success.


Assuntos
Exoesqueleto/microbiologia , Astacoidea/microbiologia , Sedimentos Geológicos/microbiologia , Microbiota/genética , Animais , Biofilmes/crescimento & desenvolvimento , Croácia , DNA Bacteriano/genética , Europa (Continente) , Hemolinfa/microbiologia , Hepatopâncreas/microbiologia , Intestinos/microbiologia , Espécies Introduzidas , RNA Ribossômico 16S/genética
11.
J Fish Dis ; 44(3): 221-247, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33345337

RESUMO

Despite important ecological role and growing commercial value of freshwater crayfish, their diseases are underresearched and many studies examining potential crayfish pathogens do not thoroughly address their epizootiology, pathology or biology. This study reviews over 100 publications on potentially pathogenic viruses, bacteria, fungi and fungal-like microorganisms reported in crayfish and systematizes them based on whether pathogenicity has been observed in an analysed species. Conclusions on pathogenicity were based on successful execution of infectivity trials. For 40.6% of examined studies, microbes were successfully systematized, while for more than a half (59.4%) no conclusion on pathogenicity could be made. Fungi and fungal-like microorganisms were the most studied group of microbes with the highest number of analysed hosts, followed by bacteria and viruses. Our analysis demonstrated the need for: (a) inclusion of higher number of potential host species in the case of viruses, (b) research of bacterial effects in tissues other than haemolymph, and (c) more research into potential fungal and fungal-like pathogens other than Aphanomyces astaci. We highlight the encountered methodological challenges and biases and call for a broad but standardized framework for execution of infectivity trials that would enable systematic data acquisition on interactions between microbes and the host.


Assuntos
Astacoidea/microbiologia , Astacoidea/virologia , Animais , Bactérias/patogenicidade , Fungos/patogenicidade , Vírus/patogenicidade
12.
J Invertebr Pathol ; 169: 107274, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682798

RESUMO

The pathogenic oomycete Aphanomyces astaci, transmitted mainly by invasive North American crayfish, causes the crayfish plague, a disease mostly lethal for native European crayfish. Due to its decimating effects on native crayfish populations in the last century, A. astaci has been listed among the 100 worst invasive species. Importantly, detecting the pathogen in endangered native crayfish populations before a disease outbreak would provide a starting point in the development of effective control measures. However, current A. astaci-detection protocols either rely on degradation-prone eDNA isolated from large volumes of water or, if focused on individual animals, include killing the crayfish. We developed a non-destructive method that detects A. astaci DNA in the microbial biofilm associated with the cuticle of individual crayfish, without the need for destructive sampling. Efficiency of the new method was confirmed by PCR and qPCR and the obtained results were congruent with the traditional destructive sampling method. Additionally, we demonstrated the applicability of the method for A. astaci monitoring in natural populations. We propose that the new method should be used in future monitoring of A. astaci presence in endangered European native crayfish individuals as an alternative to eDNA-based monitoring.


Assuntos
Aphanomyces/isolamento & purificação , Astacoidea/parasitologia , Conservação dos Recursos Naturais/métodos , Interações Hospedeiro-Parasita , Parasitologia/métodos , Animais , DNA de Protozoário/análise , Espécies Introduzidas
13.
Sci Total Environ ; 543(Pt A): 449-459, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26599145

RESUMO

Tolerance towards environmental stress has been frequently considered as one of the key determinants of invasion success. However, empirical evidence supporting the assumption that invasive species can better endure unfavorable conditions compared with native species is limited and has yielded opposing results. In this study, we examined the tolerance to different stress conditions (thermal stress and trace metal zinc pollution stress) in two phylogenetically related and functionally similar freshwater bivalve species, the native Anodonta anatina and the invasive Sinanodonta woodiana. We assessed potential differences in response to stress conditions using several cellular response assays: efficiency of the multixenobiotic resistance mechanism, respiration estimate (INT reduction capacity), and enzymatic biomarkers. Our results demonstrated that the invasive species overall coped much better with unfavorable conditions. The higher tolerance of S. woodiana was evident from (i) significantly decreased Rhodamine B accumulation indicating more efficient multixenobiotic resistance mechanism; (ii) significantly higher INT reduction capacity and (iii) less pronounced alterations in the activity of stress-related enzymes (glutathione-S-transferase, catalase) and of a neurotoxicity biomarker (cholinesterase) in the majority of treatment conditions in both stress trials. Higher tolerance to thermal extremes may provide physiological benefit for further invasion success of S. woodiana in European freshwaters, especially in the context of climate change.


Assuntos
Mudança Climática , Monitoramento Ambiental , Estresse Fisiológico , Poluentes Químicos da Água/análise , Animais , Anodonta/fisiologia , Biomarcadores/metabolismo , Catalase/metabolismo , Colinesterases/metabolismo , Água Doce/química , Glutationa Transferase/metabolismo , Espécies Introduzidas , Estresse Oxidativo , Unionidae/fisiologia , Poluentes Químicos da Água/toxicidade
14.
Behav Processes ; 91(1): 77-81, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22688078

RESUMO

Ecosystems today increasingly suffer invasions by multiple invasive species, some of which may share similar advantageous life history traits and ecological niche. In such cases, direct competition can influence invasion success of both species, and provide insights into competition without co-evolution in species equally novel to the environment. We used two widespread crayfish invaders of freshwater ecosystems of Europe, signal crayfish (Pacifastacus leniusculus) and spiny cheek crayfish (Orconectes limosus), to investigate how behavioural decisions in agonistic encounters contribute to competitive advantages in the absence of adaptation to either opponents or an environment. In direct competition against novel but comparable opponents, the key factor for establishing clear dominance of P. leniusculus in interspecific bouts was its greater tendency towards continued engagement in high-intensity fights. With O. limosus individuals consistently retreating from staged bouts as fights became more intense, P. leniusculus individuals did not need to adapt their strategy to be successful, suggesting that their agonistic behaviour intrinsically predisposed them to win. While both species are detrimental to invaded ecosystems, our results indicate that aggressive behaviour of P. leniusculus against unfamiliar opponents could allow it to more easily outcompete other comparable species and consequently present a potentially greater threat for native ecosystems.


Assuntos
Comportamento Agonístico , Astacoidea , Espécies Introduzidas , Animais , Masculino , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA