Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Sci Rep ; 14(1): 20989, 2024 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251776

RESUMO

Heteroplasmic mitochondrial DNA (mtDNA) variants accumulate as humans age, particularly in the stem-cell compartments, and are an important contributor to age-related disease. Mitochondrial dysfunction has been observed in osteoporosis and somatic mtDNA pathogenic variants have been observed in animal models of osteoporosis. However, this has never been assessed in the relevant human tissue. Mesenchymal stem cells (MSCs) are the progenitors to many cells of the musculoskeletal system and are critical to skeletal tissues and bone vitality. Investigating mtDNA in MSCs could provide novel insights into the role of mitochondrial dysfunction in osteoporosis. To determine if this is possible, we investigated the landscape of somatic mtDNA variation in MSCs through a combination of fluorescence-activated cell sorting and single-cell next-generation sequencing. Our data show that somatic heteroplasmic variants are present in individual patient-derived MSCs, can reach high heteroplasmic fractions and have the potential to be pathogenic. The identification of somatic heteroplasmic variants in MSCs of patients highlights the potential for mitochondrial dysfunction to contribute to the pathogenesis of osteoporosis.


Assuntos
DNA Mitocondrial , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , DNA Mitocondrial/genética , Osteoporose/genética , Osteoporose/patologia , Osteoporose/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Análise de Célula Única , Sequenciamento de Nucleotídeos em Larga Escala , Feminino , Heteroplasmia/genética , Masculino , Citometria de Fluxo , Variação Genética , Pessoa de Meia-Idade
2.
Mitochondrion ; 79: 101949, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39218053

RESUMO

The prevalence of pathogenic mutations within mitochondrial (mt) DNA of youth who were perinatally exposed to HIV and ART but remained uninfected (YHEU) were assessed relative to phenotypic clinical indicators of mitochondrial dysfunction (MtD). This was a cross-sectional, nested case-control study. A total of 144 cases met at least one clinical MtD definition and were matched with up to two controls each (n = 287). At least one risk mutation was present in nearly all YHEU (97 %). No differences in mutation frequencies were observed between metabolic or neurodevelopmental cases and respective controls; however, higher frequencies were found in controls versus respective neurologic or growth cases.

3.
Commun Biol ; 7(1): 1045, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39181993

RESUMO

The astrocyte-to-neuron lactate shuttle model entails that, upon glutamatergic neurotransmission, glycolytically derived pyruvate in astrocytes is mainly converted to lactate instead of being entirely catabolized in mitochondria. The mechanism of this metabolic rewiring and its occurrence in human brain are unclear. Here by using immunohistochemistry (4 brains) and imaging mass cytometry (8 brains) we show that astrocytes of the adult human neocortex and hippocampal formation express barely detectable amounts of mitochondrial proteins critical for performing oxidative phosphorylation (OXPHOS). These data are corroborated by queries of transcriptomes (107 brains) of neuronal versus non-neuronal cells fetched from the Allen Institute for Brain Science for genes coding for a much larger repertoire of entities contributing to OXPHOS, showing that human non-neuronal elements barely expressed mRNAs coding for such proteins. With less OXPHOS, human brain astrocytes are thus bound to produce more lactate to avoid interruption of glycolysis.


Assuntos
Astrócitos , Hipocampo , Mitocôndrias , Neocórtex , Fosforilação Oxidativa , Humanos , Astrócitos/metabolismo , Hipocampo/metabolismo , Hipocampo/citologia , Neocórtex/metabolismo , Neocórtex/citologia , Mitocôndrias/metabolismo , Adulto , Masculino , Feminino , Neurônios/metabolismo
4.
Sci Rep ; 14(1): 13789, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877095

RESUMO

Mitochondrial function is critical to continued cellular vitality and is an important contributor to a growing number of human diseases. Mitochondrial dysfunction is typically heterogeneous, mediated through the clonal expansion of mitochondrial DNA (mtDNA) variants in a subset of cells in a given tissue. To date, our understanding of the dynamics of clonal expansion of mtDNA variants has been technically limited to the single cell-level. Here, we report the use of nanobiopsy for subcellular sampling from human tissues, combined with next-generation sequencing to assess subcellular mtDNA mutation load in human tissue from mitochondrial disease patients. The ability to map mitochondrial mutation loads within individual cells of diseased tissue samples will further our understanding of mitochondrial genetic diseases.


Assuntos
DNA Mitocondrial , Heteroplasmia , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Humanos , DNA Mitocondrial/genética , Heteroplasmia/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Doenças Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia
5.
NPJ Parkinsons Dis ; 10(1): 25, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245550

RESUMO

Neurodegeneration in Parkinson's disease (PD) precedes diagnosis by years. Early neurodegeneration may be reflected in RNA levels and measurable as a biomarker. Here, we present the largest quantification of whole blood linear and circular RNAs (circRNA) in early-stage idiopathic PD, using RNA sequencing data from two cohorts (PPMI = 259 PD, 161 Controls; ICICLE-PD = 48 PD, 48 Controls). We identified a replicable increase in TMEM252 and LMNB1 gene expression in PD. We identified novel differences in the expression of circRNAs from ESYT2, BMS1P1 and CCDC9, and replicated trends of previously reported circRNAs. Overall, using circRNA as a diagnostic biomarker in PD did not show any clear improvement over linear RNA, minimising its potential clinical utility. More interestingly, we observed a general reduction in circRNA expression in both PD cohorts, accompanied by an increase in RNASEL expression. This imbalance implicates the activation of an innate antiviral immune response and suggests a previously unknown aspect of circRNA regulation in PD.

6.
EMBO Rep ; 24(10): e54540, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37589175

RESUMO

Mitochondrial replacement technology (MRT) aims to reduce the risk of serious disease in children born to women who carry pathogenic mitochondrial DNA (mtDNA) variants. By transplanting nuclear genomes from eggs of an affected woman to enucleated eggs from an unaffected donor, MRT creates new combinations of nuclear and mtDNA. Based on sets of shared sequence variants, mtDNA is classified into ~30 haplogroups. Haplogroup matching between egg donors and women undergoing MRT has been proposed as a means of reducing mtDNA sequence divergence between them. Here we investigate the potential effect of mtDNA haplogroup matching on clinical delivery of MRT and on mtDNA sequence divergence between donor/recipient pairs. Our findings indicate that haplogroup matching would limit the availability of egg donors such that women belonging to rare haplogroups may have to wait > 4 years for treatment. Moreover, we find that intra-haplogroup sequence variation is frequently within the range observed between randomly matched mtDNA pairs. We conclude that haplogroup matching would restrict the availability of MRT, without necessarily reducing mtDNA sequence divergence between donor/recipient pairs.


Assuntos
DNA Mitocondrial , Mitocôndrias , Criança , Humanos , Feminino , Estudos de Viabilidade , Haplótipos , Mitocôndrias/genética , DNA Mitocondrial/genética
7.
NPJ Parkinsons Dis ; 9(1): 120, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553379

RESUMO

Mitochondrial dysfunction has been suggested to contribute to Parkinson's disease pathogenesis, though an understanding of the extent or exact mechanism of this contribution remains elusive. This has been complicated by challenging nature of pathway-based analysis and an inability simultaneously study multiple related proteins within human brain tissue. We used imaging mass cytometry (IMC) to overcome these challenges, measuring multiple protein targets, whilst retaining the spatial relationship between targets in post-mortem midbrain sections. We used IMC to simultaneously interrogate subunits of the mitochondrial oxidative phosphorylation complexes, and several key signalling pathways important for mitochondrial homoeostasis, in a large cohort of PD patient and control cases. We revealed a generalised and synergistic reduction in mitochondrial quality control proteins in dopaminergic neurons from Parkinson's patients. Further, protein-protein abundance relationships appeared significantly different between PD and disease control tissue. Our data showed a significant reduction in the abundance of PINK1, Parkin and phosphorylated ubiquitinSer65, integral to the mitophagy machinery; two mitochondrial chaperones, HSP60 and PHB1; and regulators of mitochondrial protein synthesis and the unfolded protein response, SIRT3 and TFAM. Further, SIRT3 and PINK1 did not show an adaptive response to an ATP synthase defect in the Parkinson's neurons. We also observed intraneuronal aggregates of phosphorylated ubiquitinSer65, alongside increased abundance of mitochondrial proteases, LONP1 and HTRA2, within the Parkinson's neurons with Lewy body pathology, compared to those without. Taken together, these findings suggest an inability to turnover mitochondria and maintain mitochondrial proteostasis in Parkinson's neurons. This may exacerbate the impact of oxidative phosphorylation defects and ageing related oxidative stress, leading to neuronal degeneration. Our data also suggest that that Lewy pathology may affect mitochondrial quality control regulation through the disturbance of mitophagy and intramitochondrial proteostasis.

9.
Nat Commun ; 14(1): 3146, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253732

RESUMO

Neuroticism is a heritable trait composed of separate facets, each conferring different levels of protection or risk, to health. By examining mitochondrial DNA in 269,506 individuals, we show mitochondrial haplogroups explain 0.07-0.01% of variance in neuroticism and identify five haplogroup and 15 mitochondria-marker associations across a general factor of neuroticism, and two special factors of anxiety/tension, and worry/vulnerability with effect sizes of the same magnitude as autosomal variants. Within-haplogroup genome-wide association studies identified H-haplogroup-specific autosomal effects explaining 1.4% variance of worry/vulnerability. These H-haplogroup-specific autosomal effects show a pleiotropic relationship with cognitive, physical and mental health that differs from that found when assessing autosomal effects across haplogroups. We identify interactions between chromosome 9 regions and mitochondrial haplogroups at P < 5 × 10-8, revealing associations between general neuroticism and anxiety/tension with brain-specific gene co-expression networks. These results indicate that the mitochondrial genome contributes toward neuroticism and the autosomal links between neuroticism and health.


Assuntos
Estudo de Associação Genômica Ampla , Mitocôndrias , Neuroticismo , Humanos , DNA Mitocondrial/genética , Variação Genética , Haplótipos , Mitocôndrias/genética
10.
Methods Mol Biol ; 2615: 397-425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36807806

RESUMO

Pathogenic variants in both mitochondrial and nuclear genes contribute to the clinical and genetic heterogeneity of mitochondrial diseases. There are now pathogenic variants in over 300 nuclear genes linked to human mitochondrial diseases. Nonetheless, diagnosing mitochondrial disease with a genetic outcome remains challenging. However, there are now many strategies that help us to pinpoint causative variants in patients with mitochondrial disease. This chapter describes some of the approaches and recent advancements in gene/variant prioritization using whole-exome sequencing (WES).


Assuntos
Exoma , Doenças Mitocondriais , Humanos , Genômica , Doenças Mitocondriais/genética , Sequenciamento do Exoma , Núcleo Celular
12.
PLoS Genet ; 18(4): e1010068, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35363781

RESUMO

Mitochondria are implicated in the pathogenesis of cardiovascular diseases (CVDs) but the reasons for this are not well understood. Maternally-inherited population variants of mitochondrial DNA (mtDNA) which affect all mtDNA molecules (homoplasmic) are associated with cardiometabolic traits and the risk of developing cardiovascular disease. However, it is not known whether mtDNA mutations only affecting a proportion of mtDNA molecules (heteroplasmic) also play a role. To address this question, we performed a high-depth (~1000-fold) mtDNA sequencing of blood DNA in 1,399 individuals with hypertension (HTN), 1,946 with ischemic heart disease (IHD), 2,146 with ischemic stroke (IS), and 723 healthy controls. We show that the per individual burden of heteroplasmic single nucleotide variants (mtSNVs) increases with age. The age-effect was stronger for low-level heteroplasmies (heteroplasmic fraction, HF, 5-10%), likely reflecting acquired somatic events based on trinucleotide mutational signatures. After correcting for age and other confounders, intermediate heteroplasmies (HF 10-95%) were more common in hypertension, particularly involving non-synonymous variants altering the amino acid sequence of essential respiratory chain proteins. These findings raise the possibility that heteroplasmic mtSNVs play a role in the pathophysiology of hypertension.


Assuntos
Doenças Cardiovasculares , Hipertensão , Doenças Mitocondriais , Doenças Cardiovasculares/genética , DNA Mitocondrial/genética , Humanos , Hipertensão/genética , Mitocôndrias/genética , Mutação
13.
Anal Bioanal Chem ; 414(18): 5483-5492, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35233697

RESUMO

Intracellular heterogeneity contributes significantly to cellular physiology and, in a number of debilitating diseases, cellular pathophysiology. This is greatly influenced by distinct organelle populations and to understand the aetiology of disease, it is important to have tools able to isolate and differentially analyse organelles from precise location within tissues. Here, we report the development of a subcellular biopsy technology that facilitates the isolation of organelles, such as mitochondria, from human tissue. We compared the subcellular biopsy technology to laser capture microdissection (LCM) that is the state-of-the-art technique for the isolation of cells from their surrounding tissues. We demonstrate an operational limit of  >20 µm for LCM and then, for the first time in human tissue, show that subcellular biopsy can be used to isolate mitochondria beyond this limit.


Assuntos
Genômica , Biópsia , Humanos , Microdissecção e Captura a Laser/métodos
14.
Mov Disord ; 37(5): 1016-1027, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35106798

RESUMO

BACKGROUND: Common genetic variance in apolipoprotein E (APOE), ß-glucocerebrosidase (GBA), microtubule-associated protein tau (MAPT), and α-synuclein (SNCA) has been linked to cognitive decline in Parkinson's disease (PD), although studies have yielded mixed results. OBJECTIVES: To evaluate the effect of genetic variants in APOE, GBA, MAPT, and SNCA on cognitive decline and risk of dementia in a pooled analysis of six longitudinal, non-selective, population-based cohorts of newly diagnosed PD patients. METHODS: 1002 PD patients, followed for up to 10 years (median 7.2 years), were genotyped for at least one of APOE-ε4, GBA mutations, MAPT H1/H2, or SNCA rs356219. We evaluated the effect of genotype on the rate of cognitive decline (Mini-Mental State Examanation, MMSE) using linear mixed models and the development of dementia (diagnosed using standardized criteria) using Cox regression; multiple comparisons were accounted for using Benjamini-Hochberg corrections. RESULTS: Carriers of APOE-ε4 (n = 281, 29.7%) and GBA mutations (n = 100, 10.3%) had faster cognitive decline and were at higher risk of progression to dementia (APOE-ε4, HR 3.57, P < 0.001; GBA mutations, HR 1.76, P = 0.001) than non-carriers. The risk of cognitive decline and dementia (HR 5.19, P < 0.001) was further increased in carriers of both risk genotypes (n = 23). No significant effects were observed for MAPT or SNCA rs356219. CONCLUSIONS: GBA and APOE genotyping could improve the prediction of cognitive decline in PD, which is important to inform the clinical trial selection and potentially to enable personalized treatment © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Disfunção Cognitiva , Demência , Doença de Parkinson , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Disfunção Cognitiva/genética , Demência/genética , Glucosilceramidase/genética , Humanos , Mutação/genética , Doença de Parkinson/complicações , Doença de Parkinson/genética , Doença de Parkinson/psicologia
15.
Mitochondrion ; 63: 85-88, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35167983

RESUMO

Interactions between the products of the nuclear and mitochondrial genomes are critical for the function of most eukaryotic cells. Recently the introduction of mitochondrial replacement therapy has raised the question of incompatibilities between mitochondrial and nuclear variants, and their potential influence on the genetic makeup of human populations. Such interactions could also contribute to the variability of the penetrance of pathogenic DNA variants. This led us to investigate the frequencies of combinations of nuclear and mitochondrial SNP alleles (mitonuclear combinations) in healthy individuals (n = 5375) and in a cohort of patients with Parkinson's disease (PD, n = 2210). In the unaffected population, we were not able to find associations between nuclear and mitochondrial variants with a false discovery rate below 0.05 after accounting for multiple testing (i.e., the number of combinations examined). However, in the PD cohort, five combinations surpassed this threshold. Next, after combining both cohorts, we investigated whether these associations were modulated by disease status. All five combinations were significant (p < 10-3 for all tests). These combinations also showed significant evidence for an effect of the interaction between the mitochondrial and nuclear variants on disease risk. Their nuclear components mapped to TBCA, NIBAN3, and GLT25D1 and an uncharacterised intergenic region. In summary, starting from a single cohort design we identified combinations of nuclear and mitochondrial variants affecting PD disease risk.


Assuntos
Doença de Parkinson , Polimorfismo de Nucleotídeo Único , Núcleo Celular/genética , DNA Mitocondrial/genética , Humanos , Mitocôndrias/genética , Doença de Parkinson/genética
16.
Mov Disord ; 37(2): 302-314, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34779538

RESUMO

BACKGROUND: Mitochondrial dysfunction within neurons, particularly those of the substantia nigra, has been well characterized in Parkinson's disease and is considered to be related to the pathogenesis of this disorder. Dysfunction within this important organelle has been suggested to impair neuronal communication and survival; however, the reliance of astrocytes on mitochondria and the impact of their dysfunction on this essential cell type are less well characterized. OBJECTIVE: This study aimed to uncover whether astrocytes harbor oxidative phosphorylation (OXPHOS) deficiencies in Parkinson's disease and whether these deficiencies are more likely to occur in astrocytes closely associated with neurons or those more distant from them. METHODS: Postmortem human brain sections from patients with Parkinson's disease were subjected to imaging mass cytometry for individual astrocyte analysis of key OXPHOS proteins across all five complexes. RESULTS: We show the variability in the astrocytic expression of mitochondrial proteins between individuals. In addition, we found that there is evidence of deficiencies in respiratory chain subunit expression within these important glia and changes, particularly in mitochondrial mass, associated with Parkinson's disease and that are not simply a consequence of advancing age. CONCLUSION: Our data show that astrocytes, like neurons, are susceptible to mitochondrial defects and that these could have an impact on their reactivity and ability to support neurons in Parkinson's disease.


Assuntos
Astrócitos , Doença de Parkinson , Astrócitos/metabolismo , Humanos , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Doença de Parkinson/metabolismo , Substância Negra/metabolismo
17.
Methods Mol Biol ; 2277: 433-447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34080167

RESUMO

In recent years, next-generation sequencing (NGS) has become a powerful tool for studying both inherited and somatic heteroplasmic mitochondrial DNA (mtDNA) variation. NGS has proved particularly powerful when combined with single-cell isolation techniques, allowing the investigation of low-level heteroplasmic variants both between cells and within tissues. Nevertheless, there remain significant challenges, especially around the selective enrichment of mtDNA from total cellular DNA and the avoidance of nuclear pseudogenes. This chapter summarizes the techniques needed to enrich, amplify, sequence, and analyse mtDNA using NGS .


Assuntos
DNA Mitocondrial/genética , DNA Mitocondrial/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Animais , Microdissecção e Captura a Laser , Mitocôndrias Musculares/genética , Músculo Esquelético/citologia , Reação em Cadeia da Polimerase/métodos
18.
Hum Reprod Update ; 27(5): 866-884, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-33969392

RESUMO

BACKGROUND: Miscarriage describes the spontaneous loss of pregnancy before the threshold of viability; the vast majority occur before 12 weeks of gestation. Miscarriage affects one in four couples and is the most common complication of pregnancy. Chromosomal abnormalities of the embryo are identified in ∼50% of first trimester miscarriages; aneuploidy accounts for 86% of these cases. The majority of trisomic miscarriages are of maternal origin with errors occurring during meiotic division of the oocytes. Chromosome segregation errors in oocytes may be sporadic events secondary to advancing maternal age; however, there is increasing evidence to suggest possible maternal germline contributions to this. OBJECTIVE AND RATIONALE: The objective of this review was to appraise critically the existing evidence relating to maternal germline factors associated with pregnancy loss secondary to embryo aneuploidy, identify limitations in the current evidence base and establish areas requiring further research. SEARCH METHODS: The initial literature search was performed in September 2019 and updated in January 2021 using the electronic databases OVID MEDLINE, EMBASE and the Cochrane Library. No time or language restrictions were applied to the searches and only primary research was included. Participants were women who had suffered pregnancy loss secondary to numerical chromosomal abnormalities of the embryo. Study identification and subsequent data extraction were performed by two authors independently. The Newcastle-Ottawa Scale was used to judge the quality of the included studies. The results were synthesized narratively. OUTCOMES: The literature search identified 2198 titles once duplicates were removed, of which 21 were eligible for inclusion in this systematic review. They reported on maternal germline factors having variable degrees of association with pregnancy loss of aneuploid origin. The Online Mendelian Inheritance in Man (OMIM) gene ontology database was used as a reference to establish the functional role currently attributed to the genes reported. The majority of the cases reported and included were secondary to the inheritance of maternal structural factors such as Robertsonian translocations, deletions and insertions. Germline factors with a plausible role in aneuploid pregnancy loss of maternal origin included skewed X-inactivation and CGG repeats in the fragile X mental retardation (FMR1) gene. Studies that reported the association of single gene mutations with aneuploid pregnancy loss were conflicting. Single gene mutations with an uncertain or no role in aneuploid pregnancy loss included mutations in synaptonemal complex protein 3 (SYCP3), mitotic polo-like kinase 4 (PLK4) and meiotic stromal antigen 3 (STAG3) spindle integrity variants and 5,10-methylenetetrahydrofolate reductase (MTHFR). WIDER IMPLICATIONS: Identifying maternal genetic factors associated with an increased risk of aneuploidy will expand our understanding of cell division, non-disjunction and miscarriage secondary to embryo aneuploidy. The candidate germline factors identified may be incorporated in a screening panel for women suffering miscarriage of aneuploidy aetiology to facilitate counselling for subsequent pregnancies.


Assuntos
Aborto Espontâneo , Aborto Espontâneo/genética , Aneuploidia , Proteínas de Ciclo Celular , Segregação de Cromossomos , Feminino , Proteína do X Frágil da Deficiência Intelectual , Humanos , Idade Materna , Oócitos , Gravidez , Proteínas Serina-Treonina Quinases
19.
NPJ Parkinsons Dis ; 7(1): 39, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980828

RESUMO

Here we report the application of a mass spectrometry-based technology, imaging mass cytometry, to perform in-depth proteomic profiling of mitochondrial complexes in single neurons, using metal-conjugated antibodies to label post-mortem human midbrain sections. Mitochondrial dysfunction, particularly deficiency in complex I has previously been associated with the degeneration of dopaminergic neurons in Parkinson's disease. To further our understanding of the nature of this dysfunction, and to identify Parkinson's disease specific changes, we validated a panel of antibodies targeting subunits of all five mitochondrial oxidative phosphorylation complexes in dopaminergic neurons from Parkinson's disease, mitochondrial disease, and control cases. Detailed analysis of the expression profile of these proteins, highlighted heterogeneity between individuals. There is a widespread decrease in expression of all complexes in Parkinson's neurons, although more severe in mitochondrial disease neurons, however, the combination of affected complexes varies between the two groups. We also provide evidence of a potential neuronal response to mitochondrial dysfunction through a compensatory increase in mitochondrial mass. This study highlights the use of imaging mass cytometry in the assessment and analysis of expression of oxidative phosphorylation proteins, revealing the complexity of deficiencies of these proteins within individual neurons which may contribute to and drive neurodegeneration in Parkinson's disease.

20.
J Pathol ; 254(4): 430-442, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33586140

RESUMO

Mitochondria play essential roles in numerous metabolic pathways including the synthesis of adenosine triphosphate through oxidative phosphorylation. Clinically, mitochondrial diseases occur when there is mitochondrial dysfunction - manifesting at any age and affecting any organ system; tissues with high energy requirements, such as muscle and the brain, are often affected. The clinical heterogeneity is parallel to the degree of genetic heterogeneity associated with mitochondrial dysfunction. Around 10% of human genes are predicted to have a mitochondrial function, and defects in over 300 genes are reported to cause mitochondrial disease. Some involve the mitochondrial genome (mtDNA), but the vast majority occur within the nuclear genome. Except for a few specific genetic defects, there remains no cure for mitochondrial diseases, which means that a genetic diagnosis is imperative for genetic counselling and the provision of reproductive options for at-risk families. Next-generation sequencing strategies, particularly exome and whole-genome sequencing, have revolutionised mitochondrial diagnostics such that the traditional muscle biopsy has largely been replaced with a minimally-invasive blood sample for an unbiased approach to genetic diagnosis. Where these genomic approaches have not identified a causative defect, or where there is insufficient support for pathogenicity, additional functional investigations are required. The application of supplementary 'omics' technologies, including transcriptomics, proteomics, and metabolomics, has the potential to greatly improve diagnostic strategies. This review aims to demonstrate that whilst a molecular diagnosis can be achieved for many cases through next-generation sequencing of blood DNA, the use of patient tissues and an integrated, multidisciplinary multi-omics approach is pivotal for the diagnosis of more challenging cases. Moreover, the analysis of clinically relevant tissues from affected individuals remains crucial for understanding the molecular mechanisms underlying mitochondrial pathology. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Mitocôndrias/patologia , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Animais , Genômica/métodos , Humanos , Metabolômica/métodos , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA