Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Protoc ; 19(1): 159-183, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38017136

RESUMO

Intratumor heterogeneity provides the fuel for the evolution and selection of subclonal tumor cell populations. However, accurate inference of tumor subclonal architecture and reconstruction of tumor evolutionary histories from bulk DNA sequencing data remains challenging. Frequently, sequencing and alignment artifacts are not fully filtered out from cancer somatic mutations, and errors in the identification of copy number alterations or complex evolutionary events (e.g., mutation losses) affect the estimated cellular prevalence of mutations. Together, such errors propagate into the analysis of mutation clustering and phylogenetic reconstruction. In this Protocol, we present a new computational framework, CONIPHER (COrrecting Noise In PHylogenetic Evaluation and Reconstruction), that accurately infers subclonal structure and phylogenetic relationships from multisample tumor sequencing, accounting for both copy number alterations and mutation errors. CONIPHER has been used to reconstruct subclonal architecture and tumor phylogeny from multisample tumors with high-depth whole-exome sequencing from the TRACERx421 dataset, as well as matched primary-metastatic cases. CONIPHER outperforms similar methods on simulated datasets, and in particular scales to a large number of tumor samples and clones, while completing in under 1.5 h on average. CONIPHER enables automated phylogenetic analysis that can be effectively applied to large sequencing datasets generated with different technologies. CONIPHER can be run with a basic knowledge of bioinformatics and R and bash scripting languages.


Assuntos
Algoritmos , Neoplasias , Humanos , Filogenia , Neoplasias/genética , Neoplasias/patologia , Biologia Computacional/métodos , Análise de Sequência de DNA , Mutação
2.
Front Oncol ; 13: 1156743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342197

RESUMO

Background: Patient-derived xenograft (PDX) models involve the engraftment of tumour tissue in immunocompromised mice and represent an important pre-clinical oncology research method. A limitation of non-small cell lung cancer (NSCLC) PDX model derivation in NOD-scid IL2Rgammanull (NSG) mice is that a subset of initial engraftments are of lymphocytic, rather than tumour origin. Methods: The immunophenotype of lymphoproliferations arising in the lung TRACERx PDX pipeline were characterised. To present the histology data herein, we developed a Python-based tool for generating patient-level pathology overview figures from whole-slide image files; PATHOverview is available on GitHub (https://github.com/EpiCENTR-Lab/PATHOverview). Results: Lymphoproliferations occurred in 17.8% of lung adenocarcinoma and 10% of lung squamous cell carcinoma transplantations, despite none of these patients having a prior or subsequent clinical history of lymphoproliferative disease. Lymphoproliferations were predominantly human CD20+ B cells and had the immunophenotype expected for post-transplantation diffuse large B cell lymphoma with plasma cell features. All lymphoproliferations expressed Epstein-Barr-encoded RNAs (EBER). Analysis of immunoglobulin light chain gene rearrangements in three tumours where multiple tumour regions had resulted in lymphoproliferations suggested that each had independent clonal origins. Discussion: Overall, these data suggest that B cell clones with lymphoproliferative potential are present within primary NSCLC tumours, and that these are under continuous immune surveillance. Since these cells can be expanded following transplantation into NSG mice, our data highlight the value of quality control measures to identify lymphoproliferations within xenograft pipelines and support the incorporation of strategies to minimise lymphoproliferations during the early stages of xenograft establishment pipelines.

3.
Genome Med ; 15(1): 27, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081523

RESUMO

BACKGROUND: Liquid biopsies and the dynamic tracking of somatic mutations within circulating tumour DNA (ctDNA) can provide insight into the dynamics of cancer evolution and the intra-tumour heterogeneity that fuels treatment resistance. However, identifying and tracking dynamic changes in somatic copy number alterations (SCNAs), which have been associated with poor outcome and metastasis, using ctDNA is challenging. Pancreatic adenocarcinoma is a disease which has been considered to harbour early punctuated events in its evolution, leading to an early fitness peak, with minimal further subclonal evolution. METHODS: To interrogate the role of SCNAs in pancreatic adenocarcinoma cancer evolution, we applied whole-exome sequencing of 55 longitudinal cell-free DNA (cfDNA) samples taken from 24 patients (including 8 from whom a patient-derived xenograft (PDX) was derived) with metastatic disease prospectively recruited into a clinical trial. We developed a method, Aneuploidy in Circulating Tumour DNA (ACT-Discover), that leverages haplotype phasing of paired tumour biopsies or PDXs to identify SCNAs in cfDNA with greater sensitivity. RESULTS: SCNAs were observed within 28 of 47 evaluable cfDNA samples. Of these events, 30% could only be identified by harnessing the haplotype-aware approach leveraged in ACT-Discover. The exceptional purity of PDX tumours enabled near-complete phasing of genomic regions in allelic imbalance, highlighting an important auxiliary function of PDXs. Finally, although the classical model of pancreatic cancer evolution emphasises the importance of early, homogenous somatic events as a key requirement for cancer development, ACT-Discover identified substantial heterogeneity of SCNAs, including parallel focal and arm-level events, affecting different parental alleles within individual tumours. Indeed, ongoing acquisition of SCNAs was identified within tumours throughout the disease course, including within an untreated metastatic tumour. CONCLUSIONS: This work demonstrates the power of haplotype phasing to study genomic variation in cfDNA samples and reveals undiscovered intra-tumour heterogeneity with important scientific and clinical implications. Implementation of ACT-Discover could lead to important insights from existing cohorts or underpin future prospective studies seeking to characterise the landscape of tumour evolution through liquid biopsy.


Assuntos
Adenocarcinoma , Ácidos Nucleicos Livres , DNA Tumoral Circulante , Neoplasias Pancreáticas , Humanos , DNA Tumoral Circulante/genética , Adenocarcinoma/genética , Neoplasias Pancreáticas/genética , Estudos Prospectivos , Cariótipo , Mutação , Biomarcadores Tumorais/genética
4.
Nature ; 616(7957): 553-562, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37055640

RESUMO

Circulating tumour DNA (ctDNA) can be used to detect and profile residual tumour cells persisting after curative intent therapy1. The study of large patient cohorts incorporating longitudinal plasma sampling and extended follow-up is required to determine the role of ctDNA as a phylogenetic biomarker of relapse in early-stage non-small-cell lung cancer (NSCLC). Here we developed ctDNA methods tracking a median of 200 mutations identified in resected NSCLC tissue across 1,069 plasma samples collected from 197 patients enrolled in the TRACERx study2. A lack of preoperative ctDNA detection distinguished biologically indolent lung adenocarcinoma with good clinical outcome. Postoperative plasma analyses were interpreted within the context of standard-of-care radiological surveillance and administration of cytotoxic adjuvant therapy. Landmark analyses of plasma samples collected within 120 days after surgery revealed ctDNA detection in 25% of patients, including 49% of all patients who experienced clinical relapse; 3 to 6 monthly ctDNA surveillance identified impending disease relapse in an additional 20% of landmark-negative patients. We developed a bioinformatic tool (ECLIPSE) for non-invasive tracking of subclonal architecture at low ctDNA levels. ECLIPSE identified patients with polyclonal metastatic dissemination, which was associated with a poor clinical outcome. By measuring subclone cancer cell fractions in preoperative plasma, we found that subclones seeding future metastases were significantly more expanded compared with non-metastatic subclones. Our findings will support (neo)adjuvant trial advances and provide insights into the process of metastatic dissemination using low-ctDNA-level liquid biopsy.


Assuntos
Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Neoplasias Pulmonares , Mutação , Metástase Neoplásica , Carcinoma de Pequenas Células do Pulmão , Humanos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Estudos de Coortes , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metástase Neoplásica/diagnóstico , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Filogenia , Carcinoma de Pequenas Células do Pulmão/patologia , Biópsia Líquida
5.
Nat Med ; 29(4): 833-845, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37045996

RESUMO

Lung adenocarcinomas (LUADs) display a broad histological spectrum from low-grade lepidic tumors through to mid-grade acinar and papillary and high-grade solid, cribriform and micropapillary tumors. How morphology reflects tumor evolution and disease progression is poorly understood. Whole-exome sequencing data generated from 805 primary tumor regions and 121 paired metastatic samples across 248 LUADs from the TRACERx 421 cohort, together with RNA-sequencing data from 463 primary tumor regions, were integrated with detailed whole-tumor and regional histopathological analysis. Tumors with predominantly high-grade patterns showed increased chromosomal complexity, with higher burden of loss of heterozygosity and subclonal somatic copy number alterations. Individual regions in predominantly high-grade pattern tumors exhibited higher proliferation and lower clonal diversity, potentially reflecting large recent subclonal expansions. Co-occurrence of truncal loss of chromosomes 3p and 3q was enriched in predominantly low-/mid-grade tumors, while purely undifferentiated solid-pattern tumors had a higher frequency of truncal arm or focal 3q gains and SMARCA4 gene alterations compared with mixed-pattern tumors with a solid component, suggesting distinct evolutionary trajectories. Clonal evolution analysis revealed that tumors tend to evolve toward higher-grade patterns. The presence of micropapillary pattern and 'tumor spread through air spaces' were associated with intrathoracic recurrence, in contrast to the presence of solid/cribriform patterns, necrosis and preoperative circulating tumor DNA detection, which were associated with extra-thoracic recurrence. These data provide insights into the relationship between LUAD morphology, the underlying evolutionary genomic landscape, and clinical and anatomical relapse risk.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Recidiva Local de Neoplasia/patologia , Adenocarcinoma de Pulmão/genética , Progressão da Doença , DNA Helicases , Proteínas Nucleares , Fatores de Transcrição
6.
Nat Med ; 29(4): 846-858, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37045997

RESUMO

Cancer-associated cachexia (CAC) is a major contributor to morbidity and mortality in individuals with non-small cell lung cancer. Key features of CAC include alterations in body composition and body weight. Here, we explore the association between body composition and body weight with survival and delineate potential biological processes and mediators that contribute to the development of CAC. Computed tomography-based body composition analysis of 651 individuals in the TRACERx (TRAcking non-small cell lung Cancer Evolution through therapy (Rx)) study suggested that individuals in the bottom 20th percentile of the distribution of skeletal muscle or adipose tissue area at the time of lung cancer diagnosis, had significantly shorter lung cancer-specific survival and overall survival. This finding was validated in 420 individuals in the independent Boston Lung Cancer Study. Individuals classified as having developed CAC according to one or more features at relapse encompassing loss of adipose or muscle tissue, or body mass index-adjusted weight loss were found to have distinct tumor genomic and transcriptomic profiles compared with individuals who did not develop such features. Primary non-small cell lung cancers from individuals who developed CAC were characterized by enrichment of inflammatory signaling and epithelial-mesenchymal transitional pathways, and differentially expressed genes upregulated in these tumors included cancer-testis antigen MAGEA6 and matrix metalloproteinases, such as ADAMTS3. In an exploratory proteomic analysis of circulating putative mediators of cachexia performed in a subset of 110 individuals from TRACERx, a significant association between circulating GDF15 and loss of body weight, skeletal muscle and adipose tissue was identified at relapse, supporting the potential therapeutic relevance of targeting GDF15 in the management of CAC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Masculino , Humanos , Caquexia/complicações , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteômica , Recidiva Local de Neoplasia/patologia , Composição Corporal , Peso Corporal , Músculo Esquelético/metabolismo , Antígenos de Neoplasias/metabolismo , Proteínas de Neoplasias
7.
Nature ; 616(7957): 543-552, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046093

RESUMO

Intratumour heterogeneity (ITH) fuels lung cancer evolution, which leads to immune evasion and resistance to therapy1. Here, using paired whole-exome and RNA sequencing data, we investigate intratumour transcriptomic diversity in 354 non-small cell lung cancer tumours from 347 out of the first 421 patients prospectively recruited into the TRACERx study2,3. Analyses of 947 tumour regions, representing both primary and metastatic disease, alongside 96 tumour-adjacent normal tissue samples implicate the transcriptome as a major source of phenotypic variation. Gene expression levels and ITH relate to patterns of positive and negative selection during tumour evolution. We observe frequent copy number-independent allele-specific expression that is linked to epigenomic dysfunction. Allele-specific expression can also result in genomic-transcriptomic parallel evolution, which converges on cancer gene disruption. We extract signatures of RNA single-base substitutions and link their aetiology to the activity of the RNA-editing enzymes ADAR and APOBEC3A, thereby revealing otherwise undetected ongoing APOBEC activity in tumours. Characterizing the transcriptomes of primary-metastatic tumour pairs, we combine multiple machine-learning approaches that leverage genomic and transcriptomic variables to link metastasis-seeding potential to the evolutionary context of mutations and increased proliferation within primary tumour regions. These results highlight the interplay between the genome and transcriptome in influencing ITH, lung cancer evolution and metastasis.


Assuntos
Evolução Molecular , Genoma Humano , Neoplasias Pulmonares , Metástase Neoplásica , Transcriptoma , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Genômica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Metástase Neoplásica/genética , Transcriptoma/genética , Alelos , Aprendizado de Máquina , Genoma Humano/genética
8.
Nature ; 616(7957): 534-542, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046095

RESUMO

Metastatic disease is responsible for the majority of cancer-related deaths1. We report the longitudinal evolutionary analysis of 126 non-small cell lung cancer (NSCLC) tumours from 421 prospectively recruited patients in TRACERx who developed metastatic disease, compared with a control cohort of 144 non-metastatic tumours. In 25% of cases, metastases diverged early, before the last clonal sweep in the primary tumour, and early divergence was enriched for patients who were smokers at the time of initial diagnosis. Simulations suggested that early metastatic divergence more frequently occurred at smaller tumour diameters (less than 8 mm). Single-region primary tumour sampling resulted in 83% of late divergence cases being misclassified as early, highlighting the importance of extensive primary tumour sampling. Polyclonal dissemination, which was associated with extrathoracic disease recurrence, was found in 32% of cases. Primary lymph node disease contributed to metastatic relapse in less than 20% of cases, representing a hallmark of metastatic potential rather than a route to subsequent recurrences/disease progression. Metastasis-seeding subclones exhibited subclonal expansions within primary tumours, probably reflecting positive selection. Our findings highlight the importance of selection in metastatic clone evolution within untreated primary tumours, the distinction between monoclonal versus polyclonal seeding in dictating site of recurrence, the limitations of current radiological screening approaches for early diverging tumours and the need to develop strategies to target metastasis-seeding subclones before relapse.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Evolução Clonal , Células Clonais , Evolução Molecular , Neoplasias Pulmonares , Metástase Neoplásica , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Células Clonais/patologia , Estudos de Coortes , Progressão da Doença , Neoplasias Pulmonares/patologia , Metástase Neoplásica/diagnóstico , Metástase Neoplásica/patologia , Recidiva Local de Neoplasia
9.
Nature ; 616(7957): 525-533, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046096

RESUMO

Lung cancer is the leading cause of cancer-associated mortality worldwide1. Here we analysed 1,644 tumour regions sampled at surgery or during follow-up from the first 421 patients with non-small cell lung cancer prospectively enrolled into the TRACERx study. This project aims to decipher lung cancer evolution and address the primary study endpoint: determining the relationship between intratumour heterogeneity and clinical outcome. In lung adenocarcinoma, mutations in 22 out of 40 common cancer genes were under significant subclonal selection, including classical tumour initiators such as TP53 and KRAS. We defined evolutionary dependencies between drivers, mutational processes and whole genome doubling (WGD) events. Despite patients having a history of smoking, 8% of lung adenocarcinomas lacked evidence of tobacco-induced mutagenesis. These tumours also had similar detection rates for EGFR mutations and for RET, ROS1, ALK and MET oncogenic isoforms compared with tumours in never-smokers, which suggests that they have a similar aetiology and pathogenesis. Large subclonal expansions were associated with positive subclonal selection. Patients with tumours harbouring recent subclonal expansions, on the terminus of a phylogenetic branch, had significantly shorter disease-free survival. Subclonal WGD was detected in 19% of tumours, and 10% of tumours harboured multiple subclonal WGDs in parallel. Subclonal, but not truncal, WGD was associated with shorter disease-free survival. Copy number heterogeneity was associated with extrathoracic relapse within 1 year after surgery. These data demonstrate the importance of clonal expansion, WGD and copy number instability in determining the timing and patterns of relapse in non-small cell lung cancer and provide a comprehensive clinical cancer evolutionary data resource.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/etiologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Carcinoma Pulmonar de Células não Pequenas/etiologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Recidiva Local de Neoplasia/genética , Filogenia , Resultado do Tratamento , Fumar/genética , Fumar/fisiopatologia , Mutagênese , Variações do Número de Cópias de DNA
10.
Cancer Discov ; 13(6): 1364-1385, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36977461

RESUMO

Understanding the evolutionary pathways to metastasis and resistance to immune-checkpoint inhibitors (ICI) in melanoma is critical for improving outcomes. Here, we present the most comprehensive intrapatient metastatic melanoma dataset assembled to date as part of the Posthumous Evaluation of Advanced Cancer Environment (PEACE) research autopsy program, including 222 exome sequencing, 493 panel-sequenced, 161 RNA sequencing, and 22 single-cell whole-genome sequencing samples from 14 ICI-treated patients. We observed frequent whole-genome doubling and widespread loss of heterozygosity, often involving antigen-presentation machinery. We found KIT extrachromosomal DNA may have contributed to the lack of response to KIT inhibitors of a KIT-driven melanoma. At the lesion-level, MYC amplifications were enriched in ICI nonresponders. Single-cell sequencing revealed polyclonal seeding of metastases originating from clones with different ploidy in one patient. Finally, we observed that brain metastases that diverged early in molecular evolution emerge late in disease. Overall, our study illustrates the diverse evolutionary landscape of advanced melanoma. SIGNIFICANCE: Despite treatment advances, melanoma remains a deadly disease at stage IV. Through research autopsy and dense sampling of metastases combined with extensive multiomic profiling, our study elucidates the many mechanisms that melanomas use to evade treatment and the immune system, whether through mutations, widespread copy-number alterations, or extrachromosomal DNA. See related commentary by Shain, p. 1294. This article is highlighted in the In This Issue feature, p. 1275.


Assuntos
Neoplasias Encefálicas , Melanoma , Humanos , Melanoma/patologia , Mutação , Evolução Molecular , DNA
11.
bioRxiv ; 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38168428

RESUMO

Mutations in the NRF2-KEAP1 pathway are common in non-small cell lung cancer (NSCLC) and confer broad-spectrum therapeutic resistance, leading to poor outcomes. The cystine/glutamate antiporter, system xc-, is one of the >200 cytoprotective proteins controlled by NRF2, which can be non-invasively imaged by (S)-4-(3-18F-fluoropropyl)-l-glutamate ([18F]FSPG) positron emission tomography (PET). Through genetic and pharmacologic manipulation, we show that [18F]FSPG provides a sensitive and specific marker of NRF2 activation in advanced preclinical models of NSCLC. We validate imaging readouts with metabolomic measurements of system xc- activity and their coupling to intracellular glutathione concentration. A redox gene signature was measured in patients from the TRACERx 421 cohort, suggesting an opportunity for patient stratification prior to imaging. Furthermore, we reveal that system xc- is a metabolic vulnerability that can be therapeutically targeted for sustained tumour growth suppression in aggressive NSCLC. Our results establish [18F]FSPG as predictive marker of therapy resistance in NSCLC and provide the basis for the clinical evaluation of both imaging and therapeutic agents that target this important antioxidant pathway.

12.
Cell ; 184(6): 1650-1650.e1, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33740457

RESUMO

Understanding how tumors grow and evolve over time is crucial to help shed light on the underlying reasons why treatments fail and tumors metastasize. This SnapShot provides a brief introduction into the main concepts of tumor evolution. To view this SnapShot, open or download the PDF.


Assuntos
Neoplasias/patologia , Humanos , Mutação/genética , Metástase Neoplásica , Neoplasias/genética
13.
Nat Genet ; 52(3): 283-293, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32139907

RESUMO

Whole-genome doubling (WGD) is a prevalent event in cancer, involving a doubling of the entire chromosome complement. However, despite its prevalence and prognostic relevance, the evolutionary selection pressures for WGD in cancer have not been investigated. Here, we combine evolutionary simulations with an analysis of cancer sequencing data to explore WGD during cancer evolution. Simulations suggest that WGD can be selected to mitigate the irreversible, ratchet-like, accumulation of deleterious somatic alterations, provided that they occur at a sufficiently high rate. Consistent with this, we observe an enrichment for WGD in tumor types with extensive loss of heterozygosity, including lung squamous cell carcinoma and triple-negative breast cancers, and we find evidence for negative selection against homozygous loss of essential genes before, but not after, WGD. Finally, we demonstrate that loss of heterozygosity and temporal dissection of mutations can be exploited to identify novel tumor suppressor genes and to obtain a deeper characterization of known cancer genes.


Assuntos
Adenocarcinoma de Pulmão/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Duplicação Gênica , Genoma Humano/genética , Neoplasias Pulmonares/genética , Proteínas Supressoras de Tumor/genética , Estudos de Coortes , Simulação por Computador , Variações do Número de Cópias de DNA , Evolução Molecular , Humanos , Estudos Longitudinais , Perda de Heterozigosidade , Mutação , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA