Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 136(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36861884

RESUMO

The pathological accumulation of cholesterol is a signature feature of Niemann-Pick type C (NPC) disease, in which excessive lipid levels induce Purkinje cell death in the cerebellum. NPC1 encodes a lysosomal cholesterol-binding protein, and mutations in NPC1 drive cholesterol accumulation in late endosomes and lysosomes (LE/Ls). However, the fundamental role of NPC proteins in LE/L cholesterol transport remains unclear. Here, we demonstrate that NPC1 mutations impair the projection of cholesterol-containing membrane tubules from the surface of LE/Ls. A proteomic survey of purified LE/Ls identified StARD9 as a novel lysosomal kinesin responsible for LE/L tubulation. StARD9 contains an N-terminal kinesin domain, a C-terminal StART domain, and a dileucine signal shared with other lysosome-associated membrane proteins. Depletion of StARD9 disrupts LE/L tubulation, paralyzes bidirectional LE/L motility and induces accumulation of cholesterol in LE/Ls. Finally, a novel StARD9 knock-out mouse recapitulates the progressive loss of Purkinje cells in the cerebellum. Together, these studies identify StARD9 as a microtubule motor protein responsible for LE/L tubulation and provide support for a novel model of LE/L cholesterol transport that becomes impaired in NPC disease.


Assuntos
Cinesinas , Células de Purkinje , Animais , Camundongos , Cinesinas/genética , Proteômica , Transporte Biológico , Lisossomos , Camundongos Knockout
2.
PLoS One ; 7(10): e48561, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144769

RESUMO

Niemann-Pick Type C disease (NPC) is a lethal, autosomal recessive disorder caused by mutations in the NPC1 and NPC2 cholesterol transport proteins. NPC's hallmark symptoms include an accumulation of unesterified cholesterol and other lipids in the late endosomal and lysosomal cellular compartments, causing progressive neurodegeneration and death. Although the age of onset may vary in those affected, NPC most often manifests in juveniles, and is usually fatal before adolescence. In this study, we investigated the effects of various drugs, many of which modify the epigenetic control of NPC1/NPC2 gene expression, in lowering the otherwise harmful elevated intracellular cholesterol levels in NPC cells. Our studies utilized a previously described image analysis technique, which allowed us to make quantitative comparisons of the efficacy of these drugs in lowering cholesterol levels in a common NPC1 mutant model. Of the drugs analyzed, several that have been previously studied (vorinostat, panobinostat, and ß-cyclodextrin) significantly lowered the relative amount of unesterified cellular cholesterol, consistent with earlier observations. In addition, a novel potential treatment, rapamycin, likewise alleviated the NPC phenotype. We also studied combinations of effective compounds with ß-cyclodextrin; the addition of ß-cyclodextrin significantly enhanced the cholesterol-lowering activity of vorinostat and panobinostat, but had mixed effects with rapamycin. Collectively, these results may provide a basis for the eventual development of improved NPC therapies.


Assuntos
Colesterol/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Espaço Intracelular/metabolismo , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Células Cultivadas , Criança , Pré-Escolar , Cloroquina/farmacologia , Clorpromazina/farmacologia , Decitabina , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Humanos , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Masculino , Microscopia de Fluorescência , Mutação , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Panobinostat , Sirolimo/farmacologia , Vorinostat , beta-Ciclodextrinas/farmacologia
3.
J Exp Biol ; 210(Pt 24): 4359-67, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18055625

RESUMO

The responses of larval Aedes aegypti to media of pH 4, 7 and 11 provide evidence for pH regulatory strategies. Drinking rates in pH 4 media were elevated 3- to 5-fold above those observed in pH 7 or 11. Total body water was elevated during acute exposure to acidic media. During chronic exposure, total body water was decreased and Malpighian tubule mitochondrial luminosity, quantified using Mitotracker Green FM, increased. Malpighian tubule secretion rates and energy demands thus appear to increase dramatically during acid exposure. In alkaline media, drinking rates were quite low. Larvae in pH 11 media excreted net acid (0.12 nequiv H(+) g(-1) h(-1)) and the pH indicators azolitmin and bromothymol blue revealed that the rectal lumen is acidic in vivo at all ambient pH values. The anal papillae (AP) were found to be highly permeant to acid-base equivalents. Ambient pH influenced the length, and the mass-specific length, of the AP in the presence of NaCl (59.9 mmol l(-1)). In contrast, the length and mass-specific length of AP were not influenced by ambient pH in low NaCl conditions. Mitochondrial luminosity was reduced in AP of larvae reared in acidic media, and was not elevated in alkaline media, relative to that of larvae reared in neutral media. These data suggest that the AP may compromise acid-base balance in acidic media, and may also be an important site of trade-offs between H(+) homeostasis and NaCl uptake in dilute, acidic media.


Assuntos
Aedes/fisiologia , Hemolinfa/fisiologia , Água/metabolismo , Ácidos , Canal Anal/anatomia & histologia , Animais , Água Corporal , Peso Corporal , Comportamento de Ingestão de Líquido , Concentração de Íons de Hidrogênio , Larva/fisiologia , Túbulos de Malpighi/fisiologia , Mitocôndrias/metabolismo , Tamanho do Órgão , Reto/fisiologia , Salinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA